TASK: PV03
CDRL: A023
03 December 1993

Process Instrumentation
Process (PIP)and

Amadeus Guidelines
Version 0.5 - Draft

Informal Technical Data

STARS-VC-A023/001/00
03 December 1993

19920109 137

Form Approved

REPORT DOCUMENTATION PAGE , OMB No. 0704-0188

e 1 hour Der response, Inciuding the time 10r reviewing INstructions, searching existing data sources,

gathering and maintaining the data neeged, and compieting and reviewing the cotlection of information Send comments re?armng this burden estimate or any other aspect of this
Collection of information, including suggestions tor reducing this burgen. 1o Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jetterso
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and 10 the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. .

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
03 December 1993 Informal Technical Report

5. FUNDING NUMBERS

Public reporting burden for this cotfection of Nformation 1s estimated 10 averag

4. TITLE AND SUBTITLE

Process Instrumentation

Process (PIP) and Amadeus Guidelines
Version 0.5 - Draft F19628-93-C-0130

6. AUTHOR(S)

Aaron Goldstein - TRW

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

Unisys Corporation

12010 Sunrise Valley Drive
Reston, VA 22091 STARS-VC-A023/001/00

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronics System Center A023

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution "A"

13. ABSTRACT (Maximum 200 words)

This document is an initial draft description of the STARS Process Instrumentation Process
(PIP) and guidelines for applying the Amadeus Measurement System to that process. It is
a product of Paramax STARS U-Increment efforts to explore automated support for software
process measurement. These efforts have focused primarily on the Amadeus Measurement
System.

14, SUBJECT TERMS 15. NUMBESRSOF PAGES

16. PRICE CODE

77 SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

Standard form 298 (Rev 2.89)

MR 70 AN AT YON £TAN

INFORMAL TECHNICAL REPORT
For

TASK: PV03
CDRL: A023
3 December 1993

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS

(STARS)

Process Instrumentation Process (PIP)
and Amadeus Guidelines Version 0.5

(Draft)

STARS-VC-A023/001/00
3 December 1993

Data Type: Informal Technical Data

CONTRACT NO. F19628-93-C-0130

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:
TRW

under contract to

Unisys Corporation
12010 Sunrise Valley Drive

Reston, VA 22091

Distribution Statement “A”
per DoD Directive 5230.24

Acaeasion For
RIS ¢RA&Y .4

DTIC T4AB
Unsnneunved (W]

Jwtﬁ.f&@@tiaﬁmw‘

By

Pistributtong §-
Aveldability Ooden

Evafl andfop
Bist Ypealnd

p

| h— : .

Authorized for public release; Distribution is unlimited.

TASK: PV03
CDRL: A023
3 December 1993

Data ID: STARS-VC-A023/001/00

Distribution Statement “A”
per DoD Directive 5230.24
Authorized for public release; Distribution is unlimited.

Copyright 1993, Unisys Corporation, Reston, Virginia
and TRW
Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with

the DFAR Special Works Clause.

Developed by: TRW under contract to
Unisys Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution “A” of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Advanced Research Projects Agency (ARPA) under con-
tract F19628-88-D-0031, the STARS program is supported by the military services, SEI, and
MITRE, with the U.S. Air Force as the executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution “A” ‘and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for
violation of proprietary rights, or copyrights arising out of the creation or use of this docu-
ment. The contents of this document constitutes technical information developed for internal
Government use. The Government does not guarantee the accuracy of the contents and does
not sponsor the release to third parties whether engaged in performance of a Government
contract or subcontract or otherwise. The Government further disallows any liability for
damages incurred as the result of the dissemination of this information.

In addition Unisys and its subcontractors disclaim all warranties with regard to this docu-
ment, including all implied warranties of merchantability and fitness, and in no event shall
Unisys or its subcontractors be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from the loss of use, data, or profits, whether in ac-
tion of contract, negligence or other tortious action, arising in connection with the use or
performance of this document.

INFORMAL TECHNICAL REPORT
Process Instrumentation Process (PIP)
and Amadeus Guidelines Version 0.5

(Draft)

Principal Author(s):

TASK: PV03
CDRL: A023
3 December 1993

Aaron Goldstein

Approvals:

Chief Programmer Hal Hart Date
N /Zm' ﬁum‘wv /&/4/,43
Program Manager 7/61“1' Payton Date

(Signatures on File)

3 December 1993

Contents

1 Introduction
1.1 ldentification
1.2 Scope
1.3 Organization

2 Process Model for The PIP
2.1 Context

2.2 Node AQ: Instrument Software Process

2.3 Node Al: Determine Measurement Requirements
2.4 Node A2: Design Measurement Mechanisms
2.4.1

2.4.3 Node A23: Evaluate Cost of Proposed Designs

2.5 Node A3: Implement Measurement Mechanisms
Node A31: Acquire Measurement Tools

2.5.1
2.6 Node A4: Execute Measurement Mechanisms

3 Amadeus Guidelines

3.1 Determining Measurement Requirements

3.2 Designing Measurement Mechanisms
3.2.1 Designing Automated Mechanisms
3.2.2 Designing Manual Mechanisms

3.2.3 Evaluating Cost of Proposed Designs
3.3 Implementing Measurement Mechanisms
Acquiring Measurement Tools

3.3.1
3.3.2 Integrating Measurement Tools
3.4 Executing Measurement Mechanisms

A Amadeus Overview

A.1 Data Collection o o i i e

A.1.1 Monitoring The Environment

A.1.2 Triggering Agents

A.1.3 Entering Data Interactively

A.1.4 Importing Data from Foreign Tools

A.2 Metrics Visualization and Reporting
A.2.1 Extracting Data from Amadeus’ Database

A.2.2 Formatting The Data

A.2.3 Generating Graphs
A.3 Exporting Data to Foreign Tools

A.4 Metrics Analysis/Integration

A.4.1 Classification Analysis
A.5 Systematic Feedback and Empirical Guidance

B Glossary

Page 11

...........................

Node A21: Design Automated Mechanisms . . .
2.4.2 Node A22: Design Manual Mechanisms

.........

..............

STARS-VC-A023,/001/00

e e

3 December 1993 STARS-VC-A023/001/00

B.1 IDEF0 Terminology e 44
B.2 PIP Process Model Terminology 45
B.3 Amadeus Terminology 53
C PIP Decomposition 55

Page 1

3 December 1993 STARS-VC-A023/001/00

List of Figures

1

0 ~I O Ut = W N

11
12

Context Diagram 4
Decomposition of Instrument Software Process 8
Decomposition of Determine Measurement Requirements 11
Decomposition of Design Measurement Mechanisms 14
Decomposition of Design Automated Mechanisms 17
Decomposition of Design Manual Mechanisms 20
Decomposition of Evaluate Cost of Proposed Designs 22
Decomposition of Implement Measurement Mechanisms 24
Decomposition of Acquire Measurement Tools 26
Decomposition of Execute Measurement Mechanisms 28
Amadeus Control and Data Flow 38
PIP Decomposition Hierarchy 55

Page iv

3 December 1993 STARS-VC-A023/001/00

1 Introduction

1.1 Identification

This document is an initial draft description of the STARS Process Instrumentation Process
(PIP) and guidelines for applying the Amadeus' Measurement System to that process. It is
a product of Paramax STARS U-Increment efforts to explore automated support for software
process measurement. These efforts have focused primarily on the Amadeus Measurement
System.

1.2 Scope

The purpose of this document is to guide future users of software measurement technol-
ogy in the application of that technology. It describes a generic process for instrumenting
a software engineering process, and the software engineering environment (SEE) that sup-
ports it, to automate software measurement (i.e., collection, analysis, reporting and feedback
of software measurement data — also known as software metrics). This process is referred
to as the Process Instrumentation Process (PIP). It encompasses not only the planning
and implementation of software measurement mechanisms, but sustained execution of those
mechanisms as well. The PIP is generic in the sense that it does not depend on any par-
ticular measurement technology. In fact, it allows for implementation of manual software
measurement mechanisms as well as automated mechanisms — although it favors the use of
automated mechanisms whenever possible and cost-effective. As an example of how to apply
a particular software measurement technology in support of the PIP, this document provides
guidelines for applying the Amadeus Measurement System (for brevity, we will refer to this
as simply Amadeus from now on).

This document does not provide detailed instructions on how to use Amadeus. Such in-
structions can be found in the user documentation that is provided by Amadeus Software
Research as part of the Amadeus commercial product.

1.3 Organization

The body of this document consists of two main sections. Section 2 presents a diagram-
matic process model representing the PIP. Section 3 presents a set of guidelines for applying
Amadeus to the PIP. Both of these sections are organized hierarchically, according to the
hierarchical decomposition of the PIP.

The document also includes a set of appendices containing information intended for reference.
Appendix A contains an overview of Amadeus capabilities. Appendix B contains definitions
of technical terms used in this document (Note: if a term is in italics or underlined, its
definition can be found in this appendix). Appendix C contains an illustration of the PIP

1 Amadeus is a trademark of Amadeus Software Research

Page 1

3 December 1993 STARS-VC-A023/001/00

decomposition hierarchy.

Page 2

3 December 1993 STARS-VC-A023/001/00

2 Process Model for The PIP

The process model for the PIP is represented using a diagrammatic notation known as
IDEF0. IDEF stands for Integrated Computer Aided Manufacturing (ICAM) Definition
Method. IDEFO is one of several IDEF modeling paradigms, each suited to modeling a dif-
ferent kind of system and each using a different technique for system representation. IDEFO
is a static modeling paradigm that represents a system as a network of interconnected activ-
ities. This representation technique makes IDEF0 particularly useful for modeling software
lifecycle processes.

An IDEF0 model represents a process as a hierarchy of activities. It has a single activity at
the top of the hierarchy that represents the overall process. This activity is decomposed into
subactivities and each of the subactivities may be further decomposed into subsubactivities
and so on. Each decomposition of an activity into its immediate subactivities is depicted
on a separate page of the model, called a decomposition page. Every model also has a page
depicting just the single top-level activity, called a contezt page.

Each activity has a set of associated inputs, controls, outputs and mechanisms, referred to in
general as ICOMs. The activity on the context page has ICOMs representing the context in
which the process is assumed to operate (i.e., the inputs, controls and mechanisms available
to the process as a whole and the outputs that it in turn makes available to other processes).
The activities on each decomposition page are linked together by connecting their ICOMs
(e.g., by connecting the output of one activity to an input, control or mechanism of another).

Each page of an IDEF0 model contains an IDEF0 diagram. In these diagrams the activities
are depicted as boxes and the ICOMs are depicted as arrows connecting the activity boxes.
Each activity box has an associated name that identifies the activity and a node number that
identifies its place in the activity hierarchy. Similarly, each ICOM has an identifying label.
The side of an activity box from which an arrow enters or leaves determines whether it is
an input, control, output or mechanism: inputs always enter an activity box from the left
side; controls always enter an activity box from the top; outputs always leave an activity
box from the right and mechanisms always enter an activity box from the bottom. The
point where an ICOM attaches to an activity box is referred to as a port. If the activity 1s
decomposed, the ports are represented by corresponding ICOM labels around the edges of
the decomposition page; these labels are tagged with a port number, so that they can be
easily matched with the ports on the activity box for the parent activity. To reduce clutter,
a feature called a tunnel may be applied to a port, making the corresponding ICOM invisible
on the other side of the port. For further descriptions of IDEF0 terminology and notation,
refer to the glossary in Appendix B (specifically, Section B.1).

2.1 Context

Figure 1 shows the context page for the PIP. IDEF0 conventions require that all activity
names be verb phrases, so the activity on the context page is named Instrument Software
Process, rather than Process Instrumentation Process. As explained above, this single ac-

Page 3

3 December 1993

tivity represents the overall process that is being modeled.

STARS-VC-A023/001/00

Budget Schedule
Selected Metric
Definitions and
Intended Usage
Measurement SEE
Objectives Requirements
Candidate Software () () Instrumented
Metric Definitions SEE and User
o pi Instrument —__f—> Documentation
Software Engineering Software
Process Definition Process \ Published Forms
Uninstrumented : A0 and Manual
SEE and User ® Procedures
Documentation)
Metric
Measurement Reports
Tools
Collected
Software Project Measurement
Data Data
Feedback
Software
Engineering
Staff

Purpose: Document a process for instrumenting a software engineering process, and the environment/ftools
that support it, to automate software measurement.

Viewpoint: The software engineering manager.

Figure 1: Context Diagram

The Instrument Software Process activity is by no means a standalone activity. It has inter-
faces with many other software engineering activities, including software process definition,
SEE construction, software development and maintenance, software project management and
software process improvement. These interfaces are manifested as ICOMs on the context

page.

The budget and schedule controls represent budget and schedule constraints placed on the
overall process of instrumenting a software process. These normally come from software
project management activities.

The measurement objectives input represents specific statements of what objectives are to
be achieved by software measurement. These may come from software project management
activities, or they may come from software process improvement activities. They are typically
derived from a combination of customer requirements and/or expectations, corporate goals,
and project goals or needs.

The candidate software metric definitions input represents existing definitions of software

Page 4

3 December 1993 STARS-VC-A023/001/00

metrics that may be used to achieve the measurement objectives. For some metrics, there
may be several different definitions from which to choose. In such cases, customers or
corporate organizations may dictate which definitions are acceptable candidates, based on
their own biases. These candidate metric definitions usually come from either a customer’s
software acquisition activities or a corporate organization’s software process improvement
activities.

The software engineering process definition input represents descriptions of the software en-
gineering lifecycle processes to which measurement will be applied. These need not be formal
process descriptions. However, greater accuracy and detail generally enable more effective
application of software measurement. This input may come from software process defini-
tion activities; or alternatively, it may come from software development and maintenance
activities, such as writing a software development plan.

The uninstrumented SEE and user documentation input represents the software engineering
environment (SEE) and its accompanying documentation before the SEE has been instru-
mented with automated mechanisms to support software measurement. If the Instrument
Software Process activity is performed iteratively, this input may not represent an entirely
uninstrumented SEE; so the term, “uninstrumented,” may be misleading. It is actually
being used in a relative sense, rather than an absolute sense. We can say that the unin-
strumented SEE is relatively uninstrumented, when compared with the instrumented SEE
that is produced by the Instrument Software Process activity. The uninstrumented SEE and
its accompanying user documentation usually come from SEE construction activities (also
known as SEE integration activities).

The measurement tools input represents existing automated tools that may be used to col-
lect, analyze, report and/or feedback measurement data. These need not be tools that are
specifically designed for measurement. Certain kinds of general-purpose tools can often be
adapted to perform measurement functions as well. For example, a spreadsheet with a re-
porting capability could be adapted to generate metric reports. Measurement tools may
obtained from a variety of sources, including commercial tool vendors (for so-called COTS
tools), government-sponsored research activities (for public domain tools) and/or in-house
tool developers (for so-called proprietary tools). This may involve interfaces with corporate
purchasing activities and/or customer software acquisition activities.

The software project data input represents all of the information generated by a software
project. This includes software code, documentation, test results, problem reports, project
organization charts, schedules, budgets, etc. — even collected measurement data. This infor-
mation typically comes from software development and maintenance activities and software
project management activities.

The software engineering staff mechanism represents all project personnel engaged in soft-
ware engineering activities. This includes software designers, coders, testers, software engi-
neering managers, software process engineers, etc. These personnel are normally obtained
through corporate human resource management activities (e.g., hiring of staff or transfer
from other projects).

Page 5

3 December 1993 STARS-VC-A023/001/00

The sclected metric definitions and intended usage output represents definitions of software
metrics that have been chosen for collection and descriptions of how the metrics are to be
used (i.e., analyzed, reported and fed back into the process being measured). This output
may be incorporated into the software development plan as part of software development
and maintenance activities:

The SEE requirements output represents descriptions of capabilities that the SEE must
provide to support automation of software measurement. For example, if metrics concerning
software problems are to be collected automatically, the SEE must provide a capability to
track software problem reports on-line. The SEE requirements output should be provided
as an input to SEE construction activities.

The instrumented SEE and user documentation output represents the SEE and its accompa-
nying documentation after the SEE has been instrumented with automated mechanisms to
support software measurement. The documentation includes instructions on how to use the
automated measurement mechanisms that have been integrated into the SEE. The instru-
mented SEE and its accompanying user documentation should be provided as a mechanism
to support software development and maintenance activities.

The published forms and manual procedures output represents data collection forms that
have been reproduced in quantity (to support manual collection of measurement data) and
published handbooks describing manual procedures for collection, analysis, reporting, in-
terpretation and feedback of measurement data. Depending on the specific measurement
objectives and the degree to which the SEE supports automation of software measurement,
this output may or may not be produced; in some cases, no manual measurement mecha-
nisms are required. This output should also be provided as a mechanism to support software
development and maintenance activities.

The metric reports and collected measurement data outputs represent human-readable re-
ports of software metrics and machine-readable raw measurement data, respectively. The
metric reports may be textual or graphical and may include analysis results as well as raw
measurement data. The collected measurement data may be in any format, but the format
must be published so that the data can be read by external tools. These outputs should
be supplied as inputs to software project management and software process improvement
activities.

The feedback output represents information, derived from measurement data, which is used to
control the process that is being measured. Feedback may be either manual (e.g., corrective
action on the part of a software engineering manager) or automatic (e.g., execution of some
automated software engineering tools). This output should be supplied as a control to
whatever software engineering activities are appropriate, as dictated by the measurement
objectives.

Some of the ICOMs on the context page (specifically, budget, schedule and software engi-
neering staff) are tunneled, indicating that they are not central to the description of the
PIP. Although these ICOMs still apply to all of the subactivities of the Instrument Software

Page 6

3 December 1993 . STARS-VC-A023/001/00

Process activity, they are not shown explicitly on decomposition pages.

As we discuss each successive level of decomposition of the Instrument Software Process
activity, in subsequent sections of this document, we will introduce a number of subactivities
and additional ICOMs. These will be described only briefly where they are encountered.
Note that a more detailed description of each activity and each ICOM is provided in the
glossary in Appendix B (specifically, in Section B.2).

Page 7

3 December 1993 STARS-VC-A023/001/00

2.2 Node AO0: Instrument Software Process

Figure 2 presents the first level of decomposition of the Instrument Software Process activity.
According to this diagram, the Instrument Software Process consists of four subactivities:
Determine Measurement Requirements, Design Measurement Mechanisms, Implement Mea-
surement Mechanisms and Ezecute Measurement Mechanisms. These are analogous to the
requirements, design, implementation and operation phases of the software lifecycle.

n
Measurement
Objectives
Determine
Measurement » 01]
2———P Requi t Selected Metric
Candidate Software equircments) Definitions and
Metric Defmitions Al Data Collection Intended Usage
and Usage
Requirements .
Designs of
B Automated
Software Engineering - Measurement
Process Definition Design Mechanisms
M ement » 02
o . SEE
u Mechanisms .
Uninstrumented Requirements
SEE and User A2
Documentation Designs of 03
Manual Instrumented
Measurement Implement SEE and User
i Documentation
I}ieasuremmt Mechanisms Measurement
Tools Mechanisms | » 04
A3 Published Forms
and Manual
Procedures
f os
Metric
" Execute Reports
easurement
16 . —— 06
Software Project Mechanisms Collected
Data Ad Measurement
’ Data
o7
Feedback

Figure 2: Decomposition of Instrument Software Process

The Determine Measurement Requirements activity is concerned with determining what to
measure, when to measure it, and how and when to use it, in order to achieve a set of
measurement objectives. It outputs this information as a set of data collection and usage
requirements, which are subsequently input by the Design Measurement Mechanisms activity.

The Design Measurement Mechanisms activity is concerned with determining what measure-
ment mechanisms (both automated and manual) should be used to meet the data collection
and usage requirements. It produces two outputs: designs of automated measurement mech-
anisms and designs of manual measurement mechanisms. The former represents approved
designs of automated measurement mechanisms (for collection, analysis, reporting and feed-
back of measurement data), which consist of a tool-independent design of each automated

Page 8

3 December 1993 STARS-VC-A023/001/00

mechanism, a description of any SEE capabilities required to support the mechanisms, a list
of any existing measurement tools selected to implement the mechanisms, designs of any
tools that need to be developed, and designs of any tool integration “glue” that needs to
be developed. The latter represents approved designs of manual measurement mechanisms,
which consist of designs of data collection forms for any manual data collection mechanisms
and definitions of manual procedures for any manual data collection, analysis, reporting and
feedback mechanisms. These designs of measurement mechanisms are supplied as inputs to
the Implement Measurement Mechanisms activity.

The Implement Measurement Mechanisms activity is concerned with implementing the mech-
anisms according to the designs. The automated mechanisms are implemented by integrating
appropriate measurement tools with the SEE (and updating the SEE documentation accord-
ingly). The manual mechanisms are implemented by publishing the data collection forms
and manual procedures. These implemented measurement mechanisms are then supplied to
the Execute Measurement Mechanisms activity, which is essentially an integral part of the
software development and maintenance activities.

Lastly, the Execute Measurement Mechanisms activity uses the implemented measurement
mechanisms to achieve the measurement objectives.

To some extent, these activities must occur sequentially, since each depends on outputs
produced by its predecessor. However, this need not be a strictly sequential process; each
activity in the sequence need not complete before the next one starts. The measurement
objectives may be achieved incrementally or they may evolve through successive iterations
of the process. In fact, experience has shown that a measurement program that starts with
a small set of metrics and expands gradually is much more likely to succeed than one that
starts with a large set of metrics. This is mainly due to the substantial amount of planning
that is required to determine how to collect, analyze and report each metric and feed the
results back into the process being measured — not to mention the effort required to select
the metrics in the first place. The key to success is to start with a modest set of measurement
objectives and iterate the process to accommodate additional objectives later on.

At this first level of decomposition, we can start to see some of the details of how the In-
strument Software Process activity fits together with other software engineering activities.
The Determine Measurement Requirements and Design Measurement Mechanisms activities
need to consider the software engineering processes where measurements are to be collected
and used, so their inputs include a software engineering process defintion. This is presum-
ably obtained from a separate software process definition activity. Similarly, the Design
Measurement Mechanisms activity and Implement Measurement Mechanisms activity re-
quire the uninstrumented SEE and its corresponding user documentation as an input: the
former activity for purposes of identifying physical sources and destinations of measurement
data (i.e., users, tools and software artifacts from which data will be gathered or to which
data will be supplied) and prototyping designs of measurement tools and tool integrations;
the latter activity for purposes of implementing measurement tools and integrating such
tools with the SEE. The uninstrumented SEE and user documentation are presumably pro-

Page 9

3 December 1993 STARS-VC-A023/001/00

duced by a separate SEE construction activity. Interestingly, this SEE construction activity
must also take into account SEE requirements derived from the Design Measurement Mech-
anisms activity — specifically, requirements for capabilities to support measurement. Thus,
some iteration (outside the scope of this model) is required between the SEE construction
activity and the Design Measurement Mechanisms activity. The Implement Measurement
Mechanisms activity takes the resulting uninstrumented SEE and user documentation, with
the required support for measurement, as input. It produces an Instrumented SEE and
corresponding user documentation, as well as published forms and manual procedures for
measurement, that are presumably supplied as mechanisms (rather than inputs; note that
they enter from the bottom of the activity box, rather than from the left side) for the software
development and maintenance activities. The Execute Measurement Mechanisms activity
is essentially an integral part of these software development and maintenance activities. It
produces collected measurement data and metric reports that are presumably supplied as
input to software project management and software process improvement activities. It also
produces feedback that is presumably applied directly to the software engineering activities
being measured.

Because the subactivities of the Instrument Software Process activity are so closely inter-
twined with other software engineering activities, they might even be folded into those other
activities. For example, the Determine Measurement Requirements activity might be incor-
porated into software project management or software process improvement activities, the
Design Measurement Mechanisms and Implement Measurement Mechanisms activities might
be combined with SEE construction activities, and the Execute Measurement Mechanisms
activity might integrated into software development and maintenance activities. There need
not be a separate Instrument Software Process activity at all.

Nevertheless, we can still choose to model this collection of measurement activities as sub-
activities of a separate Instrument Software Process activity. This allows us to focus on
activities related to software measurement without getting too caught up in the details of
other software engineering activities. It is important to remember that this IDEF0 process
model is merely an abstraction that we find useful for describing the PIP, and that the actual
implementation of the PIP need not be structured in exactly the same way.

Page 10

3 December 1993 STARS-VC-A023/001/00

2.3 Node Al: Determine Measurement Requirements

Figure 3 presents the decomposition of the Determine Measurement Requirements activity.
This activity consists of three subactivities: Select Metrics, Identify Required Data [tems
and Identify Data Collection & Usage Points.

Select
n 5
Measurement > Morics » O1
Objectives Selected Metric
All Definitions and
Intended Usage
2
Candidate Software
Metric Definitions
Identify List of Required
Required | Data ltems
Data Items
Al2
Identify Data
Collection &
. e 02
B Usage Points Data Collection
Software Engineering Al3 and Usage
Process Definition Requirements

Figure 3: Decomposition of Determine Measurement Requirements

The Select Metrics activity is concerned with choosing appropriate software metrics to meet
the measurement objectives. One approach that is often recommended for selecting soft-
ware metrics is to apply Basili and Weiss’ Goal-Question-Metric (GQM) paradigm. In this
paradigm, the measurement objectives are refined in a stepwise fashion until they are de-
tailed enough that specific questions can be framed about quantifiable characteristics of the
software; these quantifiable characteristics constitute the selected metrics. It is important
to consider not only what metrics to collect, but also the manner in which they will be used.
Collection and storage of measurement data can be costly, so there is no point in collecting
the data unless you plan to make use of it. A benefit of the GQM paradigm is that the process
of refining the measurement objectives provides insight into how to use the collected metric
data to achieve those objectives. Unfortunately, the GQM paradigm is strictly top-down, so
it is difficult to apply when a set of candidate metric definitions is dictated. In that case,

Page 11

3 December 1993 STARS-VC-A023/001/00

it 1s usually best to work bottom-up, matching the documented purpose of each candidate
metric against the measurement objectives. The output of the Select Metrics activity i1s a
set of selected metric definitions and their intended usage. This is supplied as input to the
Identify Required Data Items activity. It is also an overall output of the Instrument Software
Process activity.

The Identify Required Data Items activity is concerned with identifying the individual pieces
of measurement data that must be collected to enable calculation of the selected software
metrics and to support use of those metrics as intended. When a measurement is made, it
may be necessary to collect multiple pieces of information. This is clearly the case when a
metric is defined as a formula involving multiple variables (e.g., defect density, which is a
ratio of defects to lines of code). Another case where it may be necessary to collect multiple
pieces of information is when the measurement data (or metric) is to be aggregated in various
ways for analysis and/or reporting. For example, a source-lines-or-code (SLOC) metric may
be aggregated by software component (at various levels of the component hierarchy) and also
by programming language; so additional information identifying the software component and
the programming language must be associated with the SLOC value when the measurement
is performed. Sample metric reports (either textual or graphical) can be useful in identifying
data items that are required to support aggregation. Sometimes, they can even be helpful
in clarifying the definition of the metric (e.g., in cases where the textual definition of the
metric is ambiguous). The output of the Identify Required Data Items activity is a list of
required data items. This is supplied as an input to the Identify Data Collection & Usage
Points activity.

The Identify Data Collection & Usage Points activity is concerned with identifying the points
in the software engineering process where measurement data is to be collected and used, and
also the frequency of collection and use. In this activity, the software engineering process
definition is analyzed to determine the appropriate points (and frequency) for collecting the
required data items, analyzing them, reporting the metrics and analysis results, and feeding
them back into the process. This process definition need not be very formal. However, a
clear and fairly detailed process definition generally reduces the amount of effort required for
this activity. In considering where the measurement data is to be used, one may sometimes
encounter confidentiality issues. Certain kinds of measurement data may be considered
sensitive. In that case, access to the data must be controlled. Any such confidentiality
issues must be documented at this point, so they can be addressed properly in the Design
Measurement Mechanisms activity. The output of the Identify Data Collection & Usage
Points activity consists of a list of data collection and usage requirements. It should include
the following information for each metric:

e Metric Name
¢ Metric Definition (a very brief definition of the metric)
e Benefits (benefits accruing from the intended use)

e Algorithm/Formula (precise algorithm /formula for calculating the metric)

Page 12

3 December 1993 STARS-VC-A023/001/00

e Data Collection Requirements (what is to be collected when and from where)

e Data Usage Requirements (what data is to be used when and in what way and by
whom)

o Sample Report Format (if usage includes reporting)
This output is supplied as the primary input for the Design Measurement Mechanisms ac-
tivity.

Again, the dependencies between the activities impose a sequential ordering. But like the
overall Instrument Software Process activity, this activity may also be executed iteratively,
expanding the measurement objectives on each iteration.

Page 13

3 December 1993 STARS-VC-A023/001/00

2.4 Node A2: Design Measurement Mechanisms

Figure 4 presents the decomposition of the Design Measurement Mechanisms activity. This
activity consists of three subactivities: Design Automated Mechanisms, Design Manual Mech-
anisms and Fvaluate Cost of Proposed Designs.

N
Data Collection B
and Usage
Requi ts
equiremen () Proposed Designs of
Automated Mechanisms
12
Software Engineering) Mechanisms Automation Not Possible
Process Definition » A2l
13
Uninstrumented
SEE and User N
Documentation ()
- Design
14 g Manual 4 Cost
Measurement Mechanisms Unacceptable
Tools (-—) a2
02
Proposed Designs of Designs of
Manual Mechanisms Manual
Measurement
\——p'Evaluate Cost | J Mechanisms
— f Proposed
Tool Prices Z= o ° D op
Labor Rates T — es1gns » 01
Budget A2 Designs of
Automated
L Measurement
/ Mechanisms

Figure 4: Decomposition of Design Measurement Mechanisms

The Design Automated Mechanisms activity is concerned with designing automated mech-
anisms for collection analysis, reporting and/or feedback of measurement data. These au-
tomated measurement mechanisms typically consist of automated tools and tool integration
“glue” that integrates them with each other and with the SEE. To minimize the cost of
implementing automated measurement mechanisms, existing measurement tools should be
used, whenever possible. Of course, only tools that meet the data collection and usage re-
quirements should be considered. Furthermore, they should fit well with the defined software
engineering process (as represented by the software engineering process definition) and they
should integrate easily with the SEE; otherwise it may be more cost-effective to implement
new tools. When suitable existing tools cannot be found, new measurement tools must be
developed to satisfy the remaining data collection and usage requirements. Unfortunately,
some of these requirements simply may not be satisfiable through automation - at least, not

Page 14

3 December 1993 STARS-VC-A023/001/00

in a cost-effective manner. In that case, they must be satisfied through the use of manual
mechanisms, as indicated by the Automation Not Possible ICOM in Figure 7?. The out-
put of the Design Automated Mechanisms activity is a set of proposed designs of automated
mechanisms. These proposed designs are supplied as input to the Evaluate Cost of Proposed
Designs activity, which determines whether the cost of implementation and sustained oper-
ation of the automated measurement mechanisms is acceptable. If the cost is unacceptable,
the designs may need to be reworked, as indicated by the Cost Unacceptable ICOM.

The Design Manual Mechanisms activity is concerned with designing manual mechanisms for
collection analysis, reporting and/or feedback of measurement data. These manual measure-
ment mechanisms typically consist of data collection forms and/or manual procedures for
collecting data, analyzing data, reporting data and/or analysis results and interpreting re-
ports to determine what feedback (if any) is necessary. In designing manual mechanisms, the
approved designs of automated mechanisms may need to be considered so that the automated
and manual mechanisms can be coordinated. This is particularly true when automated data
collection is combined with manual analysis, reporting and feedback, or vice versa. The
output of the Design Manual Mechanisms activity is a set of proposed designs of manual
mechanisms. Like the proposed designs of automated mechanisms, these proposed designs
of manual mechanisms are supplied as input to the Evaluate Cost of Proposed Designs ac-
tivity, which determines whether the cost of implementation and sustained operation of the
manual measurement mechanisms is acceptable. If the cost is unacceptable, the designs may
need to be reworked, as indicated by the Cost Unacceptable ICOM.

The Evaluate Cost of Proposed Designs activity is concerned with determining whether
the costs associated with the proposed designs of automated mechanisms and the proposed
designs of manual mechanisms are acceptable. These costs include not only the cost of im-
plementing the mechanisms according to the proposed designs, but the cost of sustaining
operation of the mechanisms as well. Tool prices and labor rates are needed for estimation of
these costs. If the costs are acceptable, according to the budget, the designs are approved for
implementation. If the costs are unacceptable, the design activities are repeated, to rework
the designs. The outputs of the Evaluate Cost of Proposed Designs activity are the approved
designs (both the designs of manual measurement mechanisms and the designs of automated
measurement mechanisms). These become inputs for the Implement Measurement Mecha-
nisms activity.

The sequencing of the activities, in this case, is not sequential. The Design Automated Mech-
anisms activity occurs first, reflecting the preference for automated measurement mechanisms
over manual measurement mechanisms. If the data collection and usage requirements can be
satisfied entirely by automated mechanisms, the Design Manual Mechanisms activity may
not occur at all. This is usually not the case, however. When it is discovered that automa-
tion is not possible, the Design Manual Mechanisms activity is triggerred. Meanwhile, the
Evaluate Cost of Proposed Designs activity may proceed for any proposed designs of auto-
mated mechanisms. As proposed designs of manual mechanisms are produced, the Evaluate
Cost of Proposed Designs activity may proceed for those designs as well. A separate pro-
posed design may be produced for each mechanism or several mechanisms may be grouped

Page 15

3 December 1993 STARS-VC-A023/001/00

together into a single proposed design; either way will work. Iteration of the Design Auto-
mated Mechanisms and/or Design Manual Mechanisms activities may be triggerred if the
Evaluate Cost of Proposed Designs activity determines that the costs associated with the
proposed designs are unacceptably high. Thus, it is quite possible for all three activities to
be occurring simultaneously.

Page 16

3 December 1993 STARS-VC-A023/001/00

2.4.1 Node A21: Design Automated Mechanisms

Figure 5 presents the decomposition of the Design Automated Mechanisms activity. This
activity consists of five subactivities: Develop Tool-Independent Designs, Identify Tool Re-
quirements, Select Measurement Tools, Design Additional Tools Needed and Design Tool
Integration “Glue”.

n
Data Collection :
and Usage
Requirements Develop Tool- | Tool-Independent Designs
Independent | of Mechanisms
n— . ~
Software Engineering Designs
Process Definition A211
13 - SEE
Uninstrumented Identify Tool Requirements
SEE and User Requirements ~
Documentation
A212 Mcas'uremenl Tool
Reguirements List of Selected 01
M t Proposed Designs of
Select Tools y Automated Mechanisms
Measurement [*
1 Tools
Measurement » 02
Tc:]‘; e A213 o Automation Not Possible
Unsatisfied , :
Measurement Tool DC.S].gn ?S:l?}rs:}ge
Requirements Ly Additional Developed
Tools Needed | P
A214
Designs of Tool
Integration “Glue"
Design Tool
_ Integration |)
L "Glue"
d A215

Figure 5: Decomposition of Design Automated Mechanisms

The Develop Tool-Independent Designs activity is concerned with designing mechanisms for
collection, analysis, reporting and feedback of measurement data that are independent of
the tools (if any) used to implement the mechanisms. The output of this activity consists
of tool-independent designs of mechanisms. These are supplied as input to the Identify
Tool Requirements activity (i.e., these designs are used as the basis for determining what
tool capabilities and supporting SEE capabilities are needed to implement the measurement
mechanisms). They also become a part of the proposed designs of automated mechanisms.

The Identify Tool Requirements activity is concerned with identifying requirements for au-
tomated tools that would implement the measurement mechanisms specified by the tool-
indepent designs of mechanisms. These requirements include not only requirements for

Page 17

3 December 1993 STARS-VC-A023/001/00

automated measurement tools, but requirements for SEE capabilities that must be provided
to support those tools as well. For example, if metrics concerning software problems are
to be collected automatically, the SEE must provide a capability to track software problem
reports on-line. The outputs of the Identify Tool Requirements activity consist of a set
of measurement tool requirements and a set of SEE requirements. The measurement tool
requirements are supplied as an input to the Select Measurement Tools activity. The SEE
requirements become a part of the proposed designs of automated mechanisms. They are
also an overall output of the Instrument Software Process activity.

The Select Measurement Tools activity is concerned with evaluating existing measurement
tools (which may be COTS, public domain or proprietary) to determine which ones should
be chosen to satisfy the measurement tool requirements. If not all of the measurement
tool requirements can be satisfied using existing tools, a set of tools is chosen that together
satisfy as many of these requirements as possible. The outputs of the Select Measurement
Tools activity consists of a list of the selected measurement tools and a set of unsatisfied
measurement tool requirements. The former is supplied as an input to the Design Tool
Integration “Glue” activity and also becomes a part of the proposed designs of automated
mechanisms. The latter is supplied as an input to the Design Additional Tools Needed
activity.

The Design Additional Tools Needed activity is concerned with designing additional mea-
surement tools to be developed to meet the unsatisfied measurement tool requirements. This
is necessary in cases where not all measurement tool requirements can be satisfied by existing
tools. It is also necessary in cases where the existing measurement tools are prohibitively
expensive. In some cases, it may be determined that the unsatisfied measurement tool re-
quirements simply are not satisfiable by automated means, as indicated by the Automation
Not Possible ICOM. The output of the Design Additional Tools Needed activity consists of
designs of tools to be developed. These are supplied as input to the Design Tool Integration
“Glue” activity. They also become a part of the proposed designs of automated mechanisms.

The Design Tool Integration “Glue” activity is concerned with designing the software that
needs to be developed to integrate measurement tools with each other and with the uninstru-
mented SEE. The output of this activity consists of designs of tool integration “glue” (i.e.,
designs of the integration software). These designs become a part of the proposed designs
of automated mechanisms. The proposed designs of automated mechanisms subsequently
become an input for the Evaluate Cost of Proposed Designs activity.

The dependencies between these activities impose a more or less sequential ordering. The
Develop Tool-Independent Designs activity must occur before the Identify Tool Requirements
activity, which in turn must occur before the Select Measurement Tools activity, which in
turn must occur before either the Design Additional Tools Needed activity or the Design
Tool Integration “Glue” activity. The Design Additional Tools Needed activity is optional;
it need only be performed if not all of the measurement tool requirements can be satisfied by
existing tools. If this activity is performed, it must occur before the Design Tool Integration
“Glue” activity. Not all of the measurement mechanisms need be designed together, however.

Page 18

3 December 1993 STARS-VC-A023/001/00

Only mechanisms that support the same software metric (i.e., mechanisms for collection,
analysis, reporting and feedback of the metric) need be designed together. The mechanisms
_for separate metrics can usually be designed separately. In this case, the entire sequence of
activities can be iterated for each separate metric; or alternatively, these activities may be
performed in a pipelined fashion.

Page 19

3 December 1993 STARS-VC-A023/001/00

2.4.2 Node A22: Design Manual Mechanisms

Figure 6 presents the decomposition of the Design Manual Mechanisms activity. This activity
consists of two subactivities: Design Data Collection Forms and Define Manual Procedures.

Automation Not Possible
Cl

)|

I ~
Design Data
14 » Collection | Data Collection Forms
Forms A ~
A221
Software Engineering
Process Definition
12
Data Collection y
and Usage [Define Manual
Requirements Manual Procedures
- > Procedures » 01
B Proposed Designs of
Designs of g A222 Manual Mechanisms
Automated
Measurement
Mechanisms

Figure 6: Decomposition of Design Manual Mechanisms

The Design Data Collection Forms activity is concerned with laying out the data collection
forms that will be needed to obtain the required measurement data from human sources.
The output of this activity consists of the layed out data collection forms. These forms are
supplied as an input to the Define Manual Procedures activity. They also become a part of
the proposed designs of manual mechanisms.

The Define Manual Procedures activity is concerned with defining manual procedures for
analyzing measurement data, generating metric reports, and interpreting metric reports to
determine what feedback (if any) is required for software engineering processes. This activity
is only performed when there are data collection and usage requiremnts that cannot be
satisfied by automation — at least, not in a cost-effective way. The Define Manual Procedures
activity must consider the measurement data that are available from manual data collection
forms, as well as the data that are available from automated data collection mechanisms. It

Page 20

3 December 1993 STARS-VC-A023/001/00

must also consider the designs of any automated measurement mechanisms that will be used
for analysis, reporting and feedback of measurement data. The output of the Define Manual
Procedures activity consists of the defined set of manual procedures. These become a part of
the proposed designs of manual mechanisms. The proposed designs of manual mechanisms
are subsequently supplied as an input for the Evaluate Cost of Proposed Designs activity.

To the extent that data collected manually are analyzed, reported and fed back manually,
these activities must be performed sequentially. It is often the case, however, that manual
analysis, reporting and feedback are combined with automated data collection, rather than
manual data collection. And it is sometimes the case that manual data collection is combined
with automated analysis, reporting and feedback. In these cases, the Design Data Collection
Forms activity and the Define Manual Procedures activity can pe performed in parallel. Also,
iteration of the sequence of activities is possible, because mechanisms to support separate
metrics can be designed separately.

Page 21

3 December 1993 STARS-VC-A023/001/00

2.4.3 Node A23: Evaluate Cost of Proposed Designs

Figure 7 presents the decomposition of the Evaluate Cost of Proposed Designs activity. This
activity consists of four subactivities: Estimate Cost of Automated Mechanisms, Estimate
Cost of Manual Mechanisms, Fvaluate Cost and Approve Designs.

n
Proposed Designs of
Automated Mechanisms Estimate Cost
13 of Automated
Tool Prices Mechanisms h
[A231
14
Labor Rates \ Estimate Cost
P> of Manual
n Mechanisms |)
A N\ i
Proposed Designs of A232
Manual Mechanisms
Estimated Cost of
Implementing and 01
Sustaining Mechanisms Evaluate Cost Cost
—p Unacceptable
Cost Acceptable
5
Budget A233 02
Designs of
Manual
Measurement
t Approve Mechanisms
P Designs
N }——9 03
A234 Designs of
Automated
Measurement
Mechanisms

Figure 7: Decomposition of Evaluate Cost of Proposed Designs

The Estimate Cost of Automated Mechanisms activity is concerned with estimating both
the cost of implementation and the cost of sustained operation of the proposed designs of
automated mechanisms. The cost of implementation includes the cost of developing and/or
purchasing the proposed measurement tools and the cost of integrating the tools with the
SEE (and with each other, if necessary). The cost of sustained operation includes both the
cost of human interaction with the tools (if any) and the cost of computer resources consumed
by the tools. The output of the Estimate Cost of Automated Mechanisms consists of these
cost estimates, which are supplied as input to the Evaluate Cost activity.

The Estimate Cost of Manual Mechanisms activity is concerned with estimating both the
cost of implementation and the cost of sustained operation of the proposed designs of manual
mechanisms. The cost of implementation includes the cost of publishing (and distributing)

Page 22

3 December 1993 STARS-VC-A023/001/00

the data collection forms and the manual procedures for data collection, analysis, reporting
and feedback. The cost of sustained operation includes the cost of manually filling out the
data collection forms, manually analyzing the collected data, manually producing metric
reports and/or manually interpreting metric reports (and providing manual feedback by
acting on those interpretations). The output of the Estimate Cost of Manual Mechanisms
activity consists of these cost estimates, which are supplied as input to the Evaluate Cost
activity.

The Evaluate Cost activity is concerned with determining whether the estimated cost of
implementing and sustaining mechanisms for measurement is acceptable, according to the
budget. If the cost is acceptable, the proposed designs of the measurement mechanisms may
be approved for implementation (as indicated by the Cost Acceptable ICOM). If the cost is
unacceptable, the proposed designs of the measurement mechanisms must be reworked (as
indicated by the Cost Unacceptable ICOM). This activity has no outputs other than the cost
acceptable and cost unacceptable indications, which are used to control the Approve Designs
Design Automated Mechanisms and Design Manual Mechanisms activities.

The Approve Designs activity is concerned with approving designs of measurement mech-
anisms for implementation. To be approved, the estimated cost of implementation and
sustained operation of the mechanisms must be deemed acceptable. The designs may be ap-
proved individually (i.e., for individual metrics) or as a group. The outputs of this activity
are the approved designs of manual measurement mechanisms and the approved designs of
automated measurement mechanisms. These outputs are supplied as inputs for the Imple-
ment Measurement Mechanisms activity.

Although the Estimate Cost of Automated Mechanisms and the Estimate Cost of Manual
Mechanisms activities may be performed in parallel, the remaining activities must be per-
formed sequentially — due to dependencies among them. Again, iteration of the sequence
~of activities is possible, because mechanisms to support separate metrics can be evaluated
separately.

Page 23

3 December 1993 STARS-VC-A023/001/00

2.5 Node A3: Implement Measurement Mechanisms

Figure 8 presents the decomposition of the Implement Measurement Mechanisms activity.
This activity consists of four subactivities: Acquire Measurement Tools, Integrate Measure-
ment Tools, Publish Data Collection Forms and Publish Manual Procedures.

3
Measurement
Tools .
Acquire
Measurement

n Tools
Designs of A3l .
Automated :Acqun'ed Tools
Measurement easurement Too
Mechanisms
Integrate
Measurement
» 01
14 Tools Instrumented
Uninstrumented A32 SEE and User
SEE and User Documentation
Documentation
Publish Data
n Data Collection Forms Collection
Designs of Forms
Manual A33
Measurement
Mechanisms
Publish
Manual Procedures Manual
Proced 02
ocedures Published Forms
A34 and Manual

Procedures

Figure 8: Decomposition of Implement Measurement Mechanisms

The Acquire Measurement Tools activity is concerned with purchasing and/or developing
measurement tools as dictated by the approved designs of automated measurement mech-
anisms. The designs of automated measurement mechanisms include the list of existing
measurement tools that have been selected for purchase. They also include the designs of
the additional measurement tools to be developed. The outputs of the Acquire Measurement
Tools activity are the actual tools that have been acquired (i.e., the acquired measurement
tools). These are supplied as input to the Integrate Measurement Tools activity.

The Integrate Measurement Tools activity is concerned with integrating the acquired mea-
surement tools with the uninstrumented SEE (and with each other), according to the ap-
proved designs of automated measurement mechanisms. It is also concerned with incorporate
the user documentation for the acquired measurement tools into the user documentation for

Page 24

3 December 1993 STARS-VC-A023/001/00

the SEE. The designs of automated measurement mechanisms include the designs of the
software necessary to integrate the acquired tools (i.e., the so-called tool integration “glue”).
The output of the Integrate Measurement Tools activity is an instrumented SEE and its
accompanying user documentation. This subsequently becomes a mechanism (in the ICOM
sense of the word, mechanism) for the Execute Measurement Mechanism activity. Or more
accurately, it becomes a resource to support the software engineering process. It is also an
overall output of the Instrument Software Process activity.

The Publish Data Collection Forms activity is concerned with reproducing the approved data
collection forms in quantity (so that they will be available for use in collecting measurement
data). The output of the Publish Data Collection Forms activity is a supply of data collection
forms. These are bundled together with published handbooks of manual procedures as a
mechanism (in the ICOM sense of the word, mechanism) for the Execute Measurement
Mechanism activity. Or more accurately, they become a resource to support the software
engineéring process. They are also an overall output of the Instrument Software Process
activity.

The Publish Manual Procedures activity is concerned with publishing manual procedures.
These published manual procedures take the form of handbooks containing instructions on
how to manually collect, analyze, report and/or interpret and feed back measurement data.
These handbooks of manual procedures are bundled together with data collection forms as
a mechanism (in the ICOM sense of the word, mechanism) for the Execute Measurement
Mechanism activity. Or more accurately, they become a resource to support the software
engineering process. They are also an overall output of the Instrument Software Process
activity.

There are two independent sets of activities represented here: the activities associated with
implementing automated measurement mechanisms; and the activities associated with imple-
menting manual measurement mechanisms. The former consists of the Acquire Measurement
Tools and Integrate Measurement Tools activities, which must be performed sequentially (in
that order). The latter consists of the Publish Data Collection Forms and Publish Manual
Procedures activities, which may be performed in parallel. Because the two sets of activities
are entirely independent, any activity from one set may be performed in parallel with any
activity of the other. Iteration of these activities is also possible, because mechanisms to
support separate metrics can be implemented separately. On the other hand, a more efficient
implementation may be possible if some of the metrics are implemented together, since they
may share common mechanisms (e.g., a single form may be used to collect data for multiple
metrics, rather than a separate form for each).

Page 25

3 December 1993 STARS-VC-A023/001/00

2.5.1 Node A31: Acquire Measurement Tools

Figure 9 presents the decomposition of the Acquire Measurement Tools activity. This activity
consists of two subactivities: Purchase Measurement Tools and Develop Measurement Tools.

Purchase
I Measurement
Measurement Tools ~N
Tools -
List of Selected A311

Measurement Tools

2

Designs of
Automated
Measurement
Mechanisms Designs of Tools Develop
_ To Be Developed Measurement _ pot
i Tools " Acquired
A312 Measurement Tools

Figure 9: Decomposition of Acquire Measurement Tools

The Purchase Measurement Tools activity is concerned with purchasing the selected mea-
surement tools, as specified by the list of selected measurement tools included in the design
of automated measurement mechanisms. Some of these tools may (effectively) be purchased
at no cost, if they are public domain or if they are owned by the company for which they are
being acquired. The output of the Purchase Measurement Tools activity is the tools that
have been purchased (and their associated user documentation). These are bundled with
developed measurement tools and supplied as input to the Integrate Measurement Tools
activity.

The Develop Measurement Tools activity is concerned with developing additional measure-
ment tools, as specified by the tool designs included in the design of automated measure-
ment mechanisms. The output of the Develop Measurement Tools activity is the tools that
have been developed (and their associated user documentation). These are bundled with

Page 26

3 December 1993 STARS-VC-A023/001/00

purchased measurement tools and supplied as input to the Integrate Measurement Tools

activity.

These two activities may be performed in parallel, since they are relatively independent.

Page 27

3 December 1993 STARS-VC-A023/001/00

2.6 Node A4: Execute Measurement Mechanisms

Figure 10 presents the decomposition of the Execute Measurement Mechanisms activity.
This activity consists of four subactivities: Ezecute Data Collection Mechanisms, Ezecute
Analysis Mechanisms, Ezecute Reporting Mechanisms and Ezecute Feedback Mechanisms.

Execute Data
Collection
S i » 02
Software Project Mechanisms R
paa Adl Measurement
Data
Execute Analysis
Analysis Results
Mechanisms
Ad42
Execute
el
N——p| Mechanisms Metric
A43 Reports
Execute
Feedback
ee ba~c 03
- Mechanisms) Feedback
Ad4
b b)
|~
\ Y Vi J
M1 M2
Instrumented Published Forms
SEE and User and Manual
Documentation Procedures

Figure 10: Decomposition of Execute Measurement Mechanisms

The Execute Data Collection Mechanisms activity is concerned with executing the auto-
mated and/or manual mechanisms that have been implemented to collect measurement data.
These mechanisms typically collect the measurement data by monitoring and/or processing
software project data. The output of the Execute Data Collection activity consists of the
collected measurement data. This data is supplied as an input to either the Execute Analy-
sis Mechanisms activity or the execute Reporting Mechanisms activity. It is also an overall
output of the Instrument Software Process activity.

The Execute Analysis Mechanisms activity is concerned with executing the automated
and/or manual mechanisms that have been implemented to analyze collected measurement
data. The output of the Execute Analysis Mechanisms activity consists of analysis results.
These are supplied as input to either the Execute Reporting Mechanisms activity or the
Execute Feedback Mechanisms activity.

Page 28

3 December 1993 STARS-VC-A023/001/00

The Execute Reporting Mechanisms activity is concerned with executing the automated
and/or manual mechanisms that have been implemented to generate metric reports from
collected measurement data and analysis results. The output of the Execute Reporting
Mechanisms activity consists of metric reports. These are supplied as input to the Execute
Feedback Mechanisms activity. They are also an overall output of the Instrument Software
Process activity.

The Execute Feedback Mechanisms activity is concerned with executing the automated
and/or manual mechanisms that have been implemented to interpret analysis results and
metric reports and produce feedback. Feedback can be used to control the software engineer-
ing process that is being measured. It may also serve as an input into the software process
definition process (or the software process improvement process, if there is such a process),
for use in software process improvement. The output of the Execute Feedback Mechanisms
activity consists of feedback to be used for control the software engineering process. This
feedback is an overall output of the Instrument Software Process activity.

These activities are partially ordered. The Execute Data Collection Mechanisms activity
must be performed before the Execute Analysis Mechanisms or Execute Reporting Mecha-
nisms activities can be performed. This is because the data must be gathered before it can be
analyzed or reported. Similarly, the Execute Analysis Mechanisms or the Execute Reporting
Mechanisms activity must be performed before the Execute Feedback Mechanisms activity
can be performed. This is because the data must be analyzed first, if the analysis results are
to be fed back automatically; and the analysis results must be reported first, if they are to
be fed back manually.

Page 29

3 December 1993 STARS-VC-A023/001/00

3 Amadeus Guidelines

The preceeding section described the PIP in generic terms, as if it were totally independent
of software measurement technology employed. This is because it treats the activities at a
fairly high level of abstration. The fact is that, when it comes to applying the PIP in the
context of a particular set of software measurement tools and techniques, the PIP may need
some tailoring.

This section presents some specific tailoring guidelines for applying the PIP in the context
of Amadeus. These guidelines are based on experience gained in using Amadeus and early
prototypes of the PIP on a TRW project (supported by STARS) during the STARS U-
Increment. Mostly, they concern the design and implementation of automated measurement
mechanisms.

Before proceeding any further you may find it useful to review the capabilities of Amadeus.
An overview of these capabilities is provided in Appendix A, for reference.

3.1 Determining Measurement Requirements

The Determine Measurement Requirements activity is not one that requires tailoring for ap-
plication of various software measurement technologies. This activity involves determining
what measurement data to collect and for what purpose, and when to collect it and when
to make use of it. It does not involve determining what mechanisms will be used to collect,
analyze, report or feedback the measurement data, or how to implement those mechanisms.
These issues concerning mechanisms are the ones that are addressed differently when us-
ing different software measurement technologies. The tailoring required to deal with these
differences appears in later activities.

3.2 Designing Measurement Mechanisms

Amadeus enables a higher degree of automation than some other sofware measurement tech-
nologies. In addition to automating collection of measurement data, it can automate analysis
of measurement data, reporting of both the raw data and analysis results, and feedback of
the analysis results into software engineering processes. Consequently, when Amadeus is
used, fewer manual measurement mechanisms are designed and the automated measurement
mechanisms that are designed are not limited to data collection.

Yet, there are always some situations where manual measurement mechanisms are required.
This is because automation is not always possible; or if it is possible, it may not be cost-
effective. For instance, plans or estimates (e.g., estimated lines of code for each software
build) usually cannot be collected automatically. Similarly, measurements involving off-line
activities (e.g., design walkthroughs) usually cannot be collected automatically. If this data

is to be collected at all, it must be collected manually.

Page 30

3 December 1993 STARS-VC-A023/001/00

The analysis, reporting and feedback of this data, however, need not be performed manually.
Amadeus provides utilities that make it possible to create data entry programs through
which manually collected measurement data may be entered into the on-line measurement
database. Once the data is the on-line database, automated mechanisms may be used for
analysis, reporting and feedback.

Just as there are always some situations where automation is not possible or practical, there
are also some situations where manual mechanisms are impractical. For example, it is usually
not possible to collect computer resource utilization measurements manually; there is no way
for a human to directly observe the resources being used. As another example, consider the
classic problem of collecting source code size data. It is usually not cost-effective for a human
to count lines of code manually.

Just as data that is collected manually may be analyzed, reported and fed back into the
process automatically, if it is entered into the on-line database, data that is collected au-
tomatically may be analyzed, reported and fed back manually. Amadeus supports output
of both raw measurement data and analysis results in human-readable format, so they may
be analyzed and reported manually. It also supports automatic generation of metric reports
(both tabular reports and graphical reports), from which feedback may be obtained through
manual interpretation.

The fact that Amadeus emphasizes the use of automated mechanisms means that the costs
of implementing measurement mechanisms will generally be higher than for other software
measurement technologies where more manual mechanisms are used. This should be more
than offset by the manual effort saved over the life of the project. If it is not, manual
mechanisms should be used instead. Amadeus provides the flexibility to combine both
automated and manual measurement mechanisms in the most cost-effective way. To ensure
that automation is applied only where it will be cost-effective, the design of each proposed
measurement mechanism should be carefully evaluated from the standpoint of cost (both
the cost of implementing the mechanism and the cost of using it over the lifecycle of the
project).

3.2.1 Designing Automated Mechanisms

The first two subactivities of the Design Automated Mechanisms activity, in the PIP, do
not require any tailoring for Amadeus. The tool-independent designs of mechanisms are (by
definition) independent of the measurement tools used, so the Develop Tool-Independent
Designs activity ignores Amadeus just like it would ignore any other measurement tool.
Similarly, the Identify Tool Requirements activity does not treat Amadeus differently from
any other measurement tool, since it takes a tool-independent design as input.

The other three subactivities of the Design Automated Mechanisms activity do require some
tailoring for Amadeus, however. The Select Measurement Tools activity should include
Amadeus in the list of selected measurement tools. [t should also include ease of integration
with Amadeus as one of the criteria for selecting other measurement tools. This activity

Page 31

3 December 1993 STARS-VC-A023/001/00

should treat the built-in Amadeus agents just like other measurement tools; though these
should be preferred over other comparable measurement tools, since they are already in-
tegrated with Amadeus and since they are essentially available at no cost (i.e., the cost is
included in the price of Amadeus). The Design Additional Tools Needed activity should
take the Amadeus application program interface (API) into account, so that the tools can
be designed to take advantage of the capabilities provided by Amadeus and so that they
can be easily integrated as Amadeus agents. The Design Tool Integration “Glue” activity
should also make use of capabilities provided by Amadeus. Specifically, it should make use
of Amadeus specifications and event generation capabilities.

The outputs of these three activities should include the following details, which are necessary
for implementation of measurement tools and tool integration “glue”:

e Identification of the measurement tools to be acquire and an indication as to whether
they are to be purchased or developed;

o Detailed designs of any measurement tools to be developed,;

e Identification of the Amadeus events to be generated and identification of the places
in the SEE where the event generation calls are to be inserted;

e Designs of Amadeus specifications to trigger the agents in response to the events.

More specific guidelines based on lessons learned are TBD. They will be provided in fulure
drafts of this document.

3.2.2 Designing Manual Mechanisms

As noted in Section 3.2, fewer manual measurement mechanisms are designed when Amadeus
is used than when other software measurement technologies are used. This is mainly be-
cause Amadeus provides greater support for automation. One should remember this fact
when designing manual measurement mechanisms. It may be that automation is possible
and automated mechanisms would be more cost-effective. This is particularly likely if the
manual mechanism is concerned with analysis of metric data or interpretation of metric re-
ports. These are measurement tasks that are not normally automated and that Amadeus
can automate quite effectively. The PIP, as it is defined in Section 2, is biased towards
automation; so there is not much chance of missing an opportunity for automating measure-
ment, if the PIP is followed literally. Nevertheless, one should be on the lookout for these
unique opportunities for automation that are afforded by Amadeus.

3.2.3 Evaluating Cost of Proposed Designs

The costs of proposed designs of measurement mechanisms should be carefully evaluated
regardless of whether Amadeus is used or some other software measurement technology is
used. Consequently, this part of the PIP does not require any tailoring for Amadeus.

Page 32

3 December 1993 STARS-VC-A023/001/00

However, we have learned some lessons from TRW’s experience with Amadeus that are useful
to apply at this point in the PIP. In evaluating the cost of proposed designs of measurement
mechanisms for the TRW project, we learned that most of the effort in developing Amadeus
agents for a project is spent in developing data collection and feedback agents. These kinds
of Amadeus agents typically require more effort to develop than other kinds of agents be-
cause they have to interface with other tools in the SEE. Reporting agents, on the other
hand, typically require much less effort to develop, since they can usually be implemented
entirely with Amadeus’ own built-in capabilities (e.g., Amadeus_query, Amadeus_summary,
Amadeus_format, Amadeus_graph). The effort to develop analysis agents varies according to
the complexity of the analysis, but Amadeus’ built-in capabilities can typically be exploited
to some extent for analysis agents as well.

3.3 Implementing Measurement Mechanisms

To implement measurement mechanisms with Amadeus, one must perform three tasks:

e Instrument portions of the environment to generate events at key points in the processes
being measured,;

e Acquire (i.e., build or buy) agents to perform collection, analysis, reporting and/or
feedback of measurement data at these key points; and

e Create Amadeus specifications to trigger the agents based on the events.

The first and the third task are part of the Integrate Measurement Tools activity. The
second is part of the Acquire Measurement Tools activity. These are discussed further in the
corresponding subsection, below.

The necessary information to accomplish these tasks should be available from the Design
Measurement Mechanisms activity (specifically, from the Design Automated Mechanisms
activity).

3.3.1 Acquiring Measurement Tools

When using Amadeus, measurement tools are usually integrated as Amadeus agents - though
they may sometimes be foreign (i.e., external) tools from which measurement data is im-
ported or to which measurement data is exported. These tools may be acquired from any or
all of the following sources:

e Agents bundled with the Amadeus commercial product (i.e., included in the purchase
price);

¢ COTS tools (or public domain tools) from third parties;

Page 33

3 December 1993 STARS-VC-A023/001/00
e Development of measurement tools.

Acquisition of measurement tools from the first two sources corresponds to the Purchase
Measurement Tools activity of the PIP. In fact, acquisition of Amadeus itself would logically
be handled in this activity. Development of measurement tools corresponds to the Develop
Measurement Tools activity of the PIP.

The measurement tools to be purchased or developed should be specified as part of the
Design Measurement Mechanisms activity. For tools that are to be developed, it is important
that a detailed (code-to) design of each tool be produced during the Design Measurement
Mechanisms activity as well. Otherwise, substantial rework of the code may be required
during implementation (due to poorly defined interfaces, use of improper algorithms, etc.).

Coding measurement tools that are to serve as Amadeus agents should be straightforward,
if the detailed design has been done. They can be coded in any language (or combination of
languages) for which an Amadeus API exists — presently Ada, C and C-shell script.

3.3.2 Integrating Measurement Tools

When using Amadeus, there are two aspects to integrating measurement tools:

1. Integrating the measurement tools with Amadeus (as Amadeus agents); and

2. Integrating the Amadeus agents with the environment.

The former is accomplished by using Amadeus specifications to invoke the tools and by
using Amadeus utilities to import or export data from Amadeus’ database. The latter
is accomplished by instrumenting the SEE to generate Amadeus events and by creating
Amadeus specifications that specify which tools are to be invoked in response to which
events.

Typically, built-in Amadeus agents and measurement tools specifically developed as Amadeus
agents are already integrated with Amadeus, so only third-party tools (e.g., COTS or public
domain tools) need go through an integration activity to integrate them with Amadeus.
Many third-party tools can be integrated as Amadeus agents —not just data collection agents,
but analysis, reporting and feedback agents as well. For example, COTS PDL processors
that collect complexity metrics can be integrated as Amadeus data collection agents and
COTS graph generators and report writers can be integrated as reporting agents.

These tools are integrated with Amadeus through the use of Amadeus specifications and util-
ities provided by Amadeus for importing and exporting measurement data. Amadeus spec-
ifications can be set up to invoke the third-party tools under appropriate conditions. Data
generated by these tools can be imported into Amadeus’ database through the use of the

Page 34

3 December 1993 STARS-VC-A023/001/00

Amadeus_import command. Data required by these tools for analysis, reporting and/or feed-
back into software engineering processes can be extracted from Amadeus’ database via the
Amadeus_export, Amadeus_query, Amadeus_summary and/or Amadeus_format commands.

Third-party tools are most easily integrated with Amadeus if they provide programmatic
interfaces — especially command line interfaces — and if their input and output data formats
are well documented.

One way to instrument the SEE to generate Amadeus events is to use environment monitor
processes that run in the background. Amadeus comes with some built-in environment
monitors that can be used for this purpose. One is Amadeus_clock, which monitors the
system clock and generates an Amadeus event once every minute, ten minutes, hour, day,
week and month. Another is Amadeus_monitor, which monitors the files in a specified UNIX
directory and generates an Amadeus event each time a file in the directory is accessed or

modified.

Another way to instrument the SEE to generate Amadeus events is to embed Amadeus_event
calls within shell scripts (as Amadeus_event commands) and/or programs (as Amadeus_event
procedure calls). In this case, the events are generated as a side effect of executing the shell
scripts and/or programs.

Yet another way to generate Amadeus events is to invoke Amadeus_event interactively
through the command line interface.

Creating Amadeus specifications is straightforward. Each specification is contained in a
short text file. One line of the text file identifies the name of the specification. Another line
identifies the agent to be invoked. A third line identifies whether the process that triggers
invocation of the agent should be suspended until the agent finishes executing. The rest of
the lines specify the conditions under which the agent is to be invoked.

The Integrate Measurement Tools activity of the PIP is also concerned with installation
and configuration of the measurement tools. Installation and configuration of third-party
measurement tools will vary from one tool to the next. Installation and configuration of
Amadeus, itself, is fairly easy. One need only load the contents of the distribution tape
and edit a few configuration files, as explained in the installation instructions included with
Amadeus.

3.4 Executing Measurement Mechanisms

The details of how to execute measurement mechanisms typically depend on the kind of
mechanism (i.e., manual or automated) an how it is implemented. When Amadeus is used
to implement software measurement, execution of all automated measurement mechanisms
is controlled through a common user interface, and in most cases, the mechanisms may be set
up to execute automatically. This is typically not the case when using software measurement
tools other than Amadeus; such tools usually must be executed manually and they tend to

Page 35

3 December 1993 STARS-VC-A023/001/00

have no common user interface.

Executing automated measurement mechanisms implemented with Amadeus involves run-
ning the Amadeus measurement framework and activating a set of Amadeus specifications
that tell the Amadeus Interpreter which agents to invoke under what conditions (and how
to invoke them).

Running the Amadeus measurement framework enables Amadeus to monitor events occur-

ring within the environment and invoke Amadeus agents in response to those events. The

Amadeus measurement framework consists of a set of background processes. It includes the

Amadeus Interpreter (Amadeus_interpreter) and the clock monitor (Amadeus_clock). It may
also include file system monitor processes (Amadeus_monitor) monitoring various parts of

the file system.

Amadeus specifications can be activated by the user either from the GUI or from the com-
mand line interface. Alternatively, they may be activiated automatically via Amadeus’ API.
Amadeus’ graphical user interface (GUI) consists of a control panel (an X window) through
which users may control the Amadeus measurement framework.

The procedures for manually interpreting outputs produced by Amadeus agents should have
been defined during the Design Measurement Mechanisms activity (or more specifically, dur-
ing the Design Manual Mechanisms activity). They should have been published during the
Implement Measurement Mechanisms activity (or mor specifically, during the Publish Man-
ual Procedures activity). Whenever possible, interpretation of the collected measurement
data should be automated — to avoid misinterpretation. Nevertheless, it may be necessary to
interpret some of the data manually. In that case, the published manual procedures should
be consulted.

Page 36

3 December 1993 STARS-VC-A023/001/00

A Amadeus Overview

Amadeus is a software product that automates measurement activities within a software en-
gineering environment. It provides services to facilitate the collection, analysis and reporting
of software metrics — not just static measurements of software products, such as lines of code
or pages of documentation, but measurements of quality factors and process characteristics
as well. Amadeus also provides mechanisms for feedback of metrics into software engineer-
ing processes, to actively support empirical guidance and continuous process improvement

(CPI).

The potential benefits of Amadeus include better visibility into software engineering pro-
cesses, increased confidence in management and technical decisions, improved cost/schedule
performance of software engineering organizations, and enhanced quality of software prod-
ucts.

By virtue of its open architecture, Amadeus is extremely flexible. It may be easily adapted
to a wide variety of processes, implementation languages and measurement paradigms. It
may also be extended to collect, analyze, report and feed back new metrics.

As shown in Figure 11, Amadeus consists of multiple software components. At the heart of
Amadeus is a component called the Amadeus Interpreter. This component monitors signif-
icant events occurring within the software engineering environment (e.g., tool invocations,
changes in source files or documents, creation of software problem reports, expiration of time
intervals, even changes in collected measurement data) and invokes other components, called
agents, to respond to the events. Some of these agents perform collection of measurement
data (e.g., unobtrusively counting the number of lines of code in a source file, or prompting
a user for some data that cannot be obtained unobtrusively). Others analyze the collected
measurement data (e.g., building a predictive model based on statistical correlation of the
data). Yet others produce visualizations of the measurement data (e.g., displaying graphs or
tables of metrics) or use the data for feedback into the development process. Amadeus comes
with a set of basic data collection, analysis and visualization agents. Users may extend the
set of agents with their own, user-defined, agents.

Measurement data is collected in a historical database managed by Amadeus. This database
is organized as sequences of data records, each record representing a particular occurrence
of an event or a particular measurement of a metric value. Each data record consists of a
predefined collection of data fields, including the date and time at which the event occurred
or the metric value was measured, the name of the event or metric, the measured value of the
metric, an indication of the source of the metric value or event (e.g., the name of the source
file for a lines-of-code metric) and other contextual information that can later be used to
aggregate the data. Amadeus provides capabilities to import data from other tools, export
data to other tools, or calculate various statistics on the metric data (e.g., averages or totals)
for use in analyses or visualizations. The import/export facility can be used, for example,
to transfer the data to and from various spreadsheet programs.

Users interact with Amadeus through an OSF/Motif-based graphical user interface (GUI).

Page 37

3 December 1993 : STARS-VC-A023/001/00

HOW AMADEUS WORKS
System
> Clock/
Selsctions/ Amadeus Specification Clock/ Date/Time Calendar
Keyboard Inpyts Specitier Editor Calendar >
I (GUI) Monitor
A MM/BDTYY
Amadeus
Specifications sFile
— — — ystem
Events/ Amadeus Monitor \4
Metric Datg Event
—t Command Amadeus
Spec. Data
Repository Collection
Agents
{may be COTS)

Amadeus
Specifications

Environment

|
ty

Bulk Data File
Displafs/ [visualization/ : 'U"t‘iF"if” System
Reportgs Reporting Q;ertle's | Amadeus Y
Agents atric Interpreter)
(may be COTS) .DatalStats ‘ P Andlysis &2
/. Analysis Regults ASCI
Agents P il
7 2 {may be COTS) lles
%éef:" & %QJ
(9 .
E:Lko?ta(a éj?’ (;‘*’m Database
Utility 8 Feedback
{Query) Agents
%, <
[T
V(k‘ o \ |
& <
Amadeus *
— e = coTs Metric Y
Displays/ | 1o01e (o Data/Stats Environment Control —
Reports Spreadsh'egé{) . Tools (e.g., / Flow
- CM Tools) o
ata
Instrumentation Flow >

Figure 11: Amadeus Control and Data Flow

Page 38

3 December 1993 STARS-VC-A023/001/00

This interface provides users with the capability to dynamically control the dispatching of
agents in response to events within the software engineering environment. In addition, it
provides users with the capability to dynamically request hardcopy reports or activate and
deactivate various on-screen displays.

Besides the graphical user interface, Amadeus provides an application program interface
(API). This API allows users to create their own agents or to integrate other commercial off-
the-shelf (COTS) measurement tools as agents. It also allows them to invoke the capabilities
of the GUI from within programs or from a UNIX shell.

The following subsections briefly describe the various capabilities of Amadeus. These capa-
bilities may be invoked either from the GUI or the API. When invoked from the GUI, they
are invoked by using the mouse to select menu items and buttons from graphical displays.
When invoked from the API, they are invoked either as commands issued from a UNIX shell
script or as procedure calls issued from a program written in a language such as C. These
capabilities may also be invoked interactively through a UNIX shell, thereby providing an
alternative, command-line-based, user interface.

The following subsections sometimes mention specific Amadeus commands. Full descriptions
of these commands can be found in the user documentation that accompanies the Amadeus
commercial product.

A.1 Data Collection

Measurement data may be collected by Amadeus in any combination of three ways:

1. Fully automatic data collection from the environment;
2. Interactive data entry; or

3. Importation of data from external sources.

In the first case, data collection agents unobtrusively collect the data either by scanning
and analyzing the outputs of other tools in the environment or by communicating directly
with those other tools (via their APIs). These agents are typically invoked automatically by
Amadeus in response to events occurring within the environment.

In the second case, users supply the measurement data interactively. This may be achieved
either through a data entry utility supplied with Amadeus (Amadeus_event) or through user-
supplied data collection agents that implement on-line forms and questionnaires. Such data
collection agents may be invoked automatically by Amadeus, in response to events occurring
within the environment, or they may be invoked manually by the user.

In the third case, the measurement data must be extracted from external sources before
it can be imported into Amadeus. For example, the data may be located on some other

Page 39

3 December 1993 STARS-VC-A023/001/00

machine that does not support Amadeus or it may reside in a proprietary database that is
inaccessible to Amadeus. If the data can be extracted in ASCII format, it may subsequently
be imported into Amadeus’ database through a data import utility supplied with Amadeus
(Amadeus_import). Depending on the available facilities for communicating with the exter-
nal source of the data, this may or may not require manual intervention. If a programmatic
interface is available for extracting the data from the external source, a data collection agent
may be invoked automatically by Amadeus to extract the data and subsequently import
it into Amadeus’ database. If no such interface is available, a user may have to manually
extract the data from the external source and either manually invoke Amadeus’ data import
utility or place the data somewhere where a data collection agent can get at it.

A.1.1 Monitoring The Environment

Amadeus provides built-in utilities (Amadeus_clock and Amadeus_monitor) for monitoring
two kinds of events occurring within the environment:

e Date/time events (from the system clock); and

o File access or modification events (from the file system).

In addition, the data entry utility supplied with Amadeus (Amadeus_event) also supports
event generation, allowing users to create their own event monitors for other kinds of events
(e.g., tool invocations). '

A.1.2 Triggering Agents

Amadeus specifications indicate which agents are to be invoked under which conditions. The
conditions are based on information in Amadeus’ database, which includes events and metrics
values. Specifications may be activated via the Amadeus_activate command and deactivated
via the Amadeus_deactivate command. A list of the available specifications may be obtained
via the Amadeus_browse command. An individual specification may be displayed via the
Amadeus_show command. The list of currently active specifications may be displayed via
the Amadeus_show_active command. The syntax of Amadeus specifications is described in
the user documentation that accompanies the Amadeus commercial product.

A.1.3 Entering Data Interactively

Amadeus events may be generated interactively via the Amadeus_event command. Metric
data may also be entered interactively via the Amadeus_event command.

Page 40

3 December 1993 STARS-VC-A023/001/00

A.1.4 Importing Data from Foreign Tools

Metrics data generated by foreign tools (i.e., tools not included with the Amadeus release)
may be imported into Amadeus’ database via the Amadeus_import command. This facility
can be used, for example, to record complexity measures reported by a PDL processor.

This same facility may be used to import data from external sources. For example, it may
be used to import cost data downloaded from a cost accounting system running on another
platform.

A.2 Metrics Visualization and Reporting

Amadeus comes with utilities that support visualization and reporting of metrics. These
utilities break down the task of metrics visualization and reporting into three steps:

1. Extracting the data from Amadeus’ database;
2. Formatting the data in tabular form; and

3. Generating a graph of the data, if desired.

To apply the utilities, however, it is best to work backwards. First determine what data
is necessary to produce the desired graph. Then determine how this data can be obtained
by aggregating and formatting the data available in Amadeus’ database. Lastly, define the
queries that are necessary to extract the data from Amadeus’ database. In some cases, you
may find that additional data is needed that has not been collected; in such cases, the data
collection agents will require modification.

A.2.1 Extracting Data from Amadeus’ Database

Measurement data may be extracted from Amadeus’ database via the Amadeus_query com-
mand. This command extracts a sequence of data records that match a specified set of field
values.

A.2.2 Formatting The Data

Once extracted from Amadeus’ database, the measurement data may be aggregated via the
Amadeus_summary command. This command generates a table of the aggregated metric
values, where the rows represent distinct values (or combinations of values) of certain key
data fields (e.g., artifact name, month) and the columns represent aggregated values of
various metrics (e.g., current lines of code, total defects reported).

Page 41

3 December 1993 STARS-VC-A023/001/00

Arithmetic may be performed on the aggregated metric values via the Amadeusformat
command. For example, if one has aggregated the number of lines of code for an artifact
in one column and the number of defects reported for that artifact in a second column, one
can use Amadeus_format to calculate defects per thousand lines of code (i.e., by dividing the
first column by 1000 and then dividing by the second column).

A.2.3 Generating Graphs

Metric data in a tabular form may be displayed as a graph via the Amadeus_graph command.
This command currently supports two kinds of graphs: line graphs and bar graphs. Line
graphs may display multiple lines, representing multiple data sets (each taken from a separate
column of the tabular input). Line graphs may also (optionally) have the individual data
points highlighted. Bar graphs display only a single data set.

A.3 Exporting Data to Foreign Tools -

The same facilities that are used to generate tabular reports of the measurement data can
be used to export the data to foreign tools (e.g., COTS spreadsheet programs). The data
can be extracted from Amadeus’ database via the Amadeus_query command and can then
be aggregated and formatted for export via Amadeussummary and Amadeus_format.

A.4 Metrics Analysis/Integration

Unlike other metric tools, Amadeus automates not only collection and reporting of measure-
ment data, but analysis of the data as well. It also allows multiple kinds of metrics to be
integrated within the same analysis.

A.4.1 Classification Analysis

One automated analysis technique supported by Amadeus is Classification Analysis. This
analysis technique involves construction of a predictive model based on historical metric
data. The model, which is called a classification tree, is a tree structure that integrates
multiple kinds of metrics. It predicts a particular property of a particular kind of software
artifact (e.g., error-proneness of a source code artifact) by indicating which values of which
metrics are or are not characteristic of artifact instances having the property. This tree
then serves as a decision tree for making predictions about similar artifact instances that are
under development.

Amadeus supports Classification Analysis by providing two utilities: one to construct classi-
fication trees based on historical data (Amadeus_gen_tree_view); and one to apply the trees
to predict properties of artifacts under development(Amadeus_apply_tree).

Page 42

3 December 1993 STARS-VC-A023/001/00

A.5 Systematic Feedback and Empirical Guidance

Amadeus also supports automatic feedback of analysis results into ongoing software engi-
neering processes, to empirically guide them. For example, analyses (such as Classification
Analysis) of empirical measurement data may be used to identify software components that
are likely to have defects, and feedback of those analysis results into the testing process may
focus testing on the identified components. Thus, empirical data is used to guide the process
such that resources are allocated where they are likely to provide the highest payoff.

There are basically two ways to implement feedback with Amadeus:

1. Have a shell script or a program query the metrics database at predefined points in
the process and dynamically modify the process based on the metrics data (i.e., a
programmed approach);

2. Activate an Amadeus specification to trigger additional or alternative process frag-
ments in response to Amadeus events based on the metrics data (i.e., an event-driven
approach).

Page 43

3 December 1993 STARS-VC-A023/001/00

B Glossary

This Glossary is divided into three subsections, for ease of reference. The first subsection
(B.1) defines terms that are used to discuss the IDEF0 process modeling paradigm. The
second subsection (B.2) defines terms that are used to discuss the PIP. The third subsection
(B.3) defines terms that are used to discuss Amadeus.

B.1 IDEFO Terminology

The following terms are used to discuss IDEF0 process models in general.

Activity — An action (which may be decomposed into subactions, or subactivities) that
transforms a set of inputs into a set of outputs, possibly through the use of some
mechanisms, and as governed by one or more controls; every activity has a name and
a node number associated with it; in an IDEF0 diagram, each activity is represented
by a box containing the name and the node number.

Context Page — A page of an IDEF0 model that corresponds to the top of the activity de-
composition hierarchy; it contains a single activity box representing the overall process
being modeled; the ICOMs attached to this activity box represent the context within
which the process is assumed to operate.

Control — Something that governs when and/or how an activity is performed; in an IDEF0
diagram, a control for an activity is represented by an arrow attached (by its head) to
the top side of the activity box.

Decomposition Page — a page of an IDEF0 model that depicts the decomposition of an
activity into its subactivities and their JCOMs (the decomposed activity is referred to
as the parent activity); an IDEF0 diagram will typically have many of these pages, in
order to hierarchically decompose a process into several levels of activities.

ICOM - An input, control or mechanism feeding into an activity or an output coming out
of an activity; in an IDEF0 diagram, each ICOM is represented by an arrow that has a
label associated with it; branching of an ICOM arrow into multiple arrows typically in-
dicates either unbundling of the [COM into its constituent parts or alternative variants
or distribution of the entire ICOM to multiple activities (in the former case, the indi-
vidual branches are labeled; in the latter case, they are not); joining of multiple [COM
arrows into a single arrow typically represents either bundling of multiple ICOMS or
multiple variants of an ICOM into a composite [COM or collection of a single [COM
from multiple activities (again, the branches are labeled in the former case and not
labeled in the latter case).

Input — A resource (e.g., some material or information) that is consumed by an activily; in
an IDEF0 diagram, an input for an activity is represented by an arrow attached (by
its head) to the left side of the activity box.

Page 44

3 December 1993 STARS-VC-A023/001/00

Mechanism — An entity (e.g., a person, a machine, a software tool) that performs an
activity or is used to perform an activity without being consumed by the activity; in
an IDEF0 diagram, a mechanism for an activity is represented by an arrow attached
(by its head) to the bottom side of the activity box.

Node Number — A unique identifier associated with each activity in an IDEF0 diagram;
in an IDEF0 diagram, this number is usually depicted in the lower right-hand corner
of the activity box.

Output — A product or result coming out of an activity; in an IDEF0 diagram, an output
for an activity is represented by an arrow attached (by its tail) to the right side of the
activity box.

Parent Activity When applied to a decomposition page, refers to the activity whose de-
composition is depicted on the decomposition page.

Port — A point of attachment of an /COM to an activity; ports are classified as either input
ports, output ports, control ports or mechanism ports, depending on which side of the
activity box they are located on; on an IDEF0 decomposition page, the ports of the
parent activity are represented by composite labels (typically around the edges of the
page) consisting of a port number (of the form In, Cn, On or Mn, where n is an integer)
indicating the position of the attachment point on the parent activity box and the label
associated with the attached ICOM.

Tunnel — A notational convention for reducing clutter on an IDEF0 diagram; a tunnel may
be applied to any port (or combination of ports) and has the effect of making the
ICOM attached to the port invisible on the other side of the port; when applied to the
ports around the sides of an activity box, tunnels make the ICOMs invisible on the
decomposition page for the activity (it is assumed that they are still there, but that
they are not significant enough to the activity to be worth cluttering the diagram);
when applied to the ports around the edges of a decomposition page, they make the
ICOMs invisible on the parent page (and in fact, they indicate that the ICOMs may
actually come from somewhere other than the parent activity); in an IDEF0 diagram, a
tunnel is represented by a set of parentheses surrounding the head or tail of an ICOM
arrow.

B.2 PIP Process Model Terminology

The specific terms that are used to discuss the PIP model fall into two categories: names
of activities; and labels associated with ICOMs. For ease of reference, we have divided the
following glossary of PIP terms into two parts, according to these categories.

Activities:

Acquire Measurement Tools (A31) — Purchase and/or develop measurement tools as
dictated by the designs of automated measurement mechanisms.

Page 45

3 December 1993 STARS-VC-A023/001/00

Approve Designs (A234) — Approve those designs of measurement mechanisms (i.e., em
designs of automated measurement mechanisms and designs of manual measurement
mechanisms) for which the implementation and sustained operating costs have been
deemed acceptable; the designs may be approved individually (i.e., for individual met-
rics) or as a group; once approved, the designs become inputs to the Implement Mea-
surement Mechanisms activity.

Define Manual Procedures (A222) — In cases where automation is not possible, define
manual procedures for analyzing collected measurement data, generating metric re-
ports, and interpreting metric reports to determine what feedback (if any) is required
for software engineering processes; this activity must consider the measurement data
that are available from manual data collection forms, as well as the data that are avail-
able from automated data collection mechanisms; it must also consider the designs
of automated measurement mechanisms that will be used for analysis, reporting and
feedback of measurement data.

Design Additional Tools Needed (A214) — In cases where not all measurement tool
requirements can be satisfied by existing measurement tools (commercial tools, public
domain tools or otherwise), or where the existing measurement tools are prohibitively
expensive, design additional measurement tools to meet the unsatisfied measurement
tool requirements; in some cases, it may be determined that no automated tools can
possibly satisfy the unsatisfied measurement tool requirements, so manual mechanisms
may have to be used instead.

Design Automated Mechanisms (A21) — Design automated mechanisms, if possible,
for collection, analysis, reporting and/or feedback of measurement data; automated
measurement mechanisms typically consist of automated tools and tool integration
“glue” that integrates them with each other and with the SEE; use existing measure-
ment tools, if any can be found that meet the data collection and usage requirements
and that fit well with the defined software engineering process (as represented by the
software engineering process definition) and integrate easily enough with the uninstru-
mented SEE; otherwise design new measurement tools to be developed; the proposed
designs of automated mechanisms may need to be reworked to reduce the total cost of
implementation and sustained operation.

Design Data Collection Forms (A221) — Lay out the forms (i.e., data collection forms)
that will be needed to obtain the required measurement data from human sources.

Design Manual Mechanisms (A22) — Where automation is not possible for collection,
analysis, reporting and/or feedback of measurement data, design manual mechanisms;
manual measurement mechanisms typically consist of data collection forms and/or
manual procedures for collecting data, analyzing data, reporting data and/or analysis
results and interpreting reports to determine what feedback (if any) is necessary; the
proposed designs of manual mechanisms may need to be reworked to reduce the total
cost of implementation and sustained operation.

Page 46

3 December 1993 STARS-VC-A023/001/00

Design Measurement Mechanisms (A2) — Design a cost-effective combination of au-
tomated and manual mechanisms to satisfy software measurement requirements (i.e.,
the data collection and usage requirements produced by the Determine Measurement
Requirements activity); prefer to use automated mechanisms, if possible.

Design Tool Integration “Glue” (A215) — Design the software that needs to be devel-
oped to integrate measurement tools with each other and with the uninstrumented
SEE to implement software measurement.

Determine Measurement Requirements (A1) — Determine what software metrics to
collect and for what purpose; also, determine what individual pieces of information
need to be collected, when they need to be collected, how they are to be used (e.g.,
to calculate the metrics, or to aggregate the data for analysis and/or reporting), and
when they are to be used.

Develop Measurement Tools (A312) — Develop additional measurement tools, as spec-
ified by the designs of tools to be developed, to implement automated measurement
mechanisms.

Develop Tool-Independent Designs (A211) — Design mechanisms for collection, anal-
ysis, reporting and feedback of measurement data, and do so in a manner that is
independent of the tools (if any) used to implement the mechanisms.

Estimate Cost of Automated Mechanisms (A231) — Estimate both the cost of im-
plementation and the cost of sustained operation of the proposed designs of automated
mechanisms; the cost of implementation includes the cost of developing and/or pur-
chasing the proposed measurement tools and the cost of integrating the tools with the
SEE (and with each other, if necessary); the cost of sustained operation includes both
the cost of human interaction with the tools (if any) and the cost of computer resources
consumed by the tools. '

Estimate Cost of Manual Mechanisms (A232) — Estimate both the cost of implemen-
tation and the cost of sustained operation of the proposed designs of manual mecha-
nisms; the cost of implementation includes the cost of publishing (and distributing)
the data collection forms and the manual procedures for data collection, analysis, re-
porting and feedback; the cost of sustained operation includes the cost of manually
filling out the data collection forms, manually analyzing the collected data, manually
producing metric reports and/or manually interpreting metric reports (and providing
manual feedback by acting on those interpretations).

Evaluate Cost (A233) — Determine whether the estimated cost of implementing and sus-
taining mechanisms for measurement is acceptable, based on the budget; if so, output
cost acceptable (to trigger approval of the proposed designs of the measurement mech-
anisms); otherwise, output cost unacceptable.

Evaluate Cost of Proposed Designs (A23) — Determine whether the costs associated
with the proposed designs of automated mechanisms and the proposed designs of manual

Page 47

3 December 1993 STARS-VC-A023/001/00

mechanisms are acceptable; if they are acceptable, approve the designs; if they are not
acceptable, output cost unacceptable (to trigger rework of the proposed designs).

Execute Data Collection Mechanisms (A41) — Execute the automated and/or man-
ual mechanisms that have been implemented to collect measurement data by monitor-
ing and/or processing software project data.

Execute Analysis Mechanisms (A42) — Execute the automated and/or manual mech-
anisms that have been implemented to analyze collected measurement data.

Execute Reporting Mechanisms (A43) — Execute the automated and/or manual mech-
anisms that have been implemented to generate metric reports from collected measure-
ment data and analysis results.

Execute Feedback Mechanisms (A44) — Execute the automated and/or manual mech-
anisms that have been implemented to interpret analysis results and metric reports
and produce feedback.

Execute Measurement Mechanisms (A4) — Execute the automated and/or manual mea-
surement mechanisms that have been implemented to collect measurement data, ana-
lyze the collected measurement data, generate metric reports and/or produce feedback;
the automated measurement mechanisms have been implemented by incorporating
them into the instrumented SEE and user documentation; the manual measurement
mechanisms have been implemented as published forms and manual procedures.

Identify Data Collection & Usage Points (A13) — Identify the points in the software
engineering process (as defined by the software engineering process definition) where
measurement data (as specified by the list of required data items) is to be collected
and the points where it is to be used (i.e., analyzed, reported and/or fed back into the
process); also, identify the frequency of collection and the frequency of usage, if other
than once at each point. '

Identify Required Data Items (A12) — Based on the selected metric definitions and in-
tended usage, determine what individual pieces of measurement data must be collected
to enable calculation of the selected software metrics and use of those metrics as in-
tended.

Identify Tool Requirements (A212) — Based on tool-independent designs of mechanisms
for measurement, identify requirements for automated tools that would implement
those mechanisms; this includes not only requirements for measurement tools, but
requirements for SEE capabilities that must be provided to support these tools as well.

Implement Measurement Mechanisms (A3) — Implement the approved designs of au-
tomated measurement mechanisms and/or designs of manual measurement mecha-
nisms; the implementation of automated measurement mechanisms takes the form
of an instrumented SEE and user documentation; the implementation of the manual
measurement mechanisms takes the form of published forms and manual procedures.

Page 48

3 December 1993 STARS-VC-A023/001/00

Instrument Software Process (A0) — Design, implement and execute a combination of
automated and manual mechanisms to achieve software measurement objectives; do so
within schedule and budget constraints, utilizing available software engineering staff.

Integrate Measurement Tools (A32) — Integrate the acquired measurement tools with
the uninstrumented SEE (and with each other), according to the approved designs of
automated measurement mechanisms; also, incorporate their user documentation with
user documentation for the uninstrumented SEE, to produce user documentation for
the resulting instrumented SEE.

Publish Data Collection Forms (A33) — Reproduce the approved data collection forms
in quantity (so that they will be available for use in collecting measurement data).

Publish Manual Procedures (A34) — Published handbooks containing instructions on
how to manually collect, analyze, report and/or interpret and feed back measurement
data (i.e., manual procedures for measurement).

Purchase Measurement Tools (A311) — Purchase measurement tools, as specified by
the list of selected measurement tools, to implement automated measurement mecha-
nisms; some of these tools may be effectively purchased at no cost, if they are public
domain or if they are owned by the company for which they are being acquired.

Select Measurement Tools (A213) — Evaluate existing measurement tools and deter-
mine which ones to use to satisfy the measurement tool requirements; if not all of the
measurement tool requirements can be satisfied using existing tools, select tools that
(together) will satisfy as many of these requirements as possible.

Select Metrics (A11)— Determine which candidate software metric definitions will be
used to achieve the measurement objectives and the manner in which they will be
used to achieve those objectives.

ICOMs:

Acquired Measurement Tools — Tools (and their associated user documentation) that
have been purchased and/or developed specifically to support collection, analysis, re-
porting and/or feedback of measurement data.

Analysis Results — Results of analyzing collected measurement data.

Automation Not Possible — An output of the Design Automated Mechanisms activity
that is used as a control (specifically, a trigger) for the Design Manual Mechanisms
activity; it indicates that some or all of the data collection and usage requirements could
not be satisfied using automated mechanisms — at least, not within cost constraints.

Budget — Budget constraints placed on the overall process of instrumenting a software -
process (i.e., the Instrument Software Process activity).

Page 49

3 December 1993 STARS-VC-A023/001/00

Candidate Software Metric Definitions — Existing definitions of software metrics that
may be used to achieve stated measurement objectives; it may be that there are al-
ternative definitions of some software metrics; in such cases, customers or corporate
organizations may dictate which ones are acceptable candidates, based on their own
biases.

Collected Measurement Data — All of the information obtained from measurements of
software products and processes (including contextual information, such as the date
and time that the measurement was performed, the name of the user performing the
measurement, etc.).

Cost Acceptable — An output of the Evaluate Cost activity that is used as a control
(specifically, a trigger) for the Design Automated Mechanisms activity and/or the De-
sign Manual Mechanisms activity; it indicates that the estimated cost of implementing
and sustaining the mechanisms (as they are defined in the proposed designs of au-
tomated mechanisms and proposed designs of manual mechanisms) is unacceptable,
which in turn indicates that the designs of the mechanisms require rework.

Cost Unacceptable — An output of the Evaluate Cost activity that is used as a control
(specifically, a trigger) for the Approve Design activity; it indicates that the estimated
cost of implementing and sustaining the mechanisms (as they are defined in the pro-
posed designs of automated mechanisms and proposed designs of manual mechanisms)
is acceptable.

Data Collection and Usage Requirements — Specifications of the individual pieces of
information to be collected, the point(s) in the software engineering process where they
are to be collected (and the frequency of collection), the manner in which they are to
be used, and the point(s) in the software engineering process where they are to be used
(and the frequency of use).

Data Collection Forms — Paper forms containing blanks where measurement data are to
be filled-in manually; a component of both proposed designs of manual mechanisms
and designs of manual measurement mechanisms.

Designs of Automated Measurement Mechanisms — The designs of automated mech-
anisms for collection, analysis, reporting and feedback of measurement data which
have been approved for implementation; these designs consist of five components: tool-
independent designs of mechanisms, SEE requirements, list of selected measurement
tools, designs of tools to be developed and designs of tool integration “glue”.

Designs of Manual Measurement Mechanisms — The designs of manual mechanisms
for collection, analysis, reporting and feedback of measurement data which have been
approved for implementation; these designs consist of two components: data collection
forms and manual procedures.

Designs of Tool Integration “Glue” — Designs of software that needs to be developed
to integrate measurement tools with each other and with the uninstrumented SEE; a

Page 50

3 December 1993 STARS-VC-A023/001/00

component of both proposed designs of automated mechanisms and designs of auto-
mated measurement mechanisms.

Designs of Tools To Be Developed — Designs of measurement tools that need to be de-
veloped to satisfy measurement tool requirements that cannot be satisfied by existing
tools; a component of both proposed designs of automated mechanisms and designs of
automated measurement mechanisms.

Estimated Cost of Implementing and Sustaining Mechanisms — The estimated cost
of implementing proposed mechanisms (i.e., proposed designs of automated mechanisms
and/or proposed designs of manual mechanisms) and sustaining operation of those
mechanisms throughout the course of the project.

Feedback — Information, derived from measurement data, which is to control the process
that is being measured (i.e., the software engineering process); feedback may be ei-
ther manual (e.g., corrective action on the part of a software engineering manager) or
automatic (e.g., execution of some automated software engineering tools).

Instrumented SEE and User Documentation — The software engineering environment
(SEE) after it has been instrumented with automated measurement mechanisms, and
accompanying documentation explaining both how to use the SEE to support soft-
ware engineering activities (including management) and how to use the automated
measurement mechanisms.

Labor Rates — Hourly rates (i.e., cost) for software engineering labor (specifically, the
labor required to implement and sustain the proposed designs of automated mechanisms
and the proposed designs of manual mechanisms).

List of Required Data Items — A list of individual pieces of measurement data that need
to be collected to calculate and use software metrics in accordance with the selected
metric definitions and intended usage.

List of Selected Measurement Tools — A list of existing measurement tools that have
been selected for acquisition (i.e., purchase); a component of both proposed designs of
automated mechanisms and designs of automated measurement mechanisms; in actu-
ality, the selected tools need not be strictly measurement tools, since certain general-
purpose tools can sometimes be adapted to perform measurement functions (e.g., a
spreadsheet with a reporting capability can be adapted to generate metric reports).

Manual Procedures — Instructions on how to manually collect, analyze, report and/or
interpret and feed back measurement data; a component of both proposed designs of
manual mechanisms and designs of manual measurement mechanisms.

Measurement Objectives — Specific statements of what objectives are to be achieved by
software measurement (e.g., control of software quality, improvements in configuration
management processes, predictability of software development costs and schedules);
these come from numerous sources, including customer requirements and/or expecta-
tions, corporate goals and project goals or needs; based on these statements, one can
decide what kinds of software metrics to use and how to use them.

Page 51

3 December 1993 STARS-VC-A023/001/00

Measurement Tool Requirements — A set of requirements for measurement tools.

Measurement Tools — Automated tools used to implement software measurement (i.e.,
collection, analysis, reporting and/or feedback of measurement data); these need not
be tools that are specifically designed for measurement, since certain general-purpose
tools can sometimes be adapted to perform measurement functions as well (e.g., a
spreadsheet with a reporting capability could be adapted to generate metric reports).

Metric Reports — Human readable reports of measurement data and/or analyses of those
data; these reports need not be in a textual format (e.g., they may be graphical or
tabular).

Proposed Designs of Automated Mechanisms — The designs of automated mechanisms
for collection, analysis, reporting and feedback of measurement data which have been
proposed for implementation; these designs consist of five components: tool-independent
designs of mechanisms, SEE requirements, list of selected measurement tools, designs
of tools to be developed and designs of tool integration “glue”.

Proposed Designs of Manual Mechanisms — The designs of manual mechanisms for
collection, analysis, reporting and feedback of measurement data which have been
proposed for implementation; these designs consist of two components: data collection
forms and manual procedures.

Published Forms and Manual Procedures — Data collection forms that have been re-
produced in quantity (so that they are available for use in collecting measurement data)
and published handbooks containing manual procedures; an aggregate that represents
implementation of manual measurement mechanisms.

Schedule — Schedule constraints placed on the overall process of instrumenting a software
process (i.e., the Instrument Software Process activity).

SEE Requirements — Capabilities that the SEE must provide to support automation of
software measurement; a component of both proposed designs of automated mechanisms
and designs of automated measurement mechanisms.

Selected Metric Definitions and Intended Usage — Definitions of software metrics that
have been chosen for collection, and descriptions of how the metrics are to be used (i.e.,
analyzed, reported and fed back into the process being measured); the definitions of
these metrics are chosen from candidate software metric definitions.

Software Engineering Process Definition — Descriptions of the software engineering life-
cycle processes to which measurement will be applied; although these need not be for-
mal descriptions, the more accurate and detailed they are the easier it is to determine
when, where and how to apply measurement.

Software Engineering Staff — Personnel engaged in software engineering activities (in-
cluding software designers, coders, testers, software engineering managers, software
process engineers, etc).

Page 52

3 December 1993 STARS-VC-A023/001/00

Software Project Data — All of the information generated by a software project (includ-
ing software code, documentation, test results, problem reports, project organization
charts, schedules, budgets, measurement data, etc).

Tool-Independent Designs of Mechanisms — Designs of mechanisms for collection, anal-
ysis, reporting and feedback of measurement data which are stated in such a way that
they do not depend on the specific tools (if any) used to implement the mechanisms;
a component of both proposed designs of automated mechanisms and designs of auto-
mated measurement mechanisms.

Tool Prices — Prices of measurement tools that are mentioned in the proposed designs of
automated mechanisms (specifically, tools that appear in the list of selected measure-
ment tools).

Uninstrumented SEE and User Documentation — The software engineering environ-
ment (SEE) that is to be instrumented, and accompanying documentation explaining
how to use it to support software engineering activities (including management); in
actuality, since Instrument Software Process could be performed iteratively, this may
be a partially instrumented SEE, rather than an uninstrumented SEE (in which case,
the result of Instrument Software Process is a more instrumented SEE, rather than
just an instrumented SEE).

Unsatisfied Measurement Tool Requirements — Those measurement tool requirements
that cannot be satisfied using existing tools.

B.3 Amadeus Terminology

The following terms are used to discuss Amadeus.

Agent — An executable object (e.g., a program or shell script) that is invoked by the
Amadeus Interpreter in response to an event.

Amadeus Interpreter — The component of the Amadeus measurement system that in-
terprets specifications. It monitors events occurring in the environment and invokes
agents in response, as directed by specifications.

Amadeus Specifier — The component of the Amadeus measurement system that inter-
prets specifications

Artifact — An entity (e.g., a software engineering activity, or an object resulting from a
software engineering activity) that is subjected to measurement.

Classification Analysis — An analysis technique that uses predictive models to predict
properties of software.

Data item — A piece of information that is required to calculate a metric.

Page 53

3 December 1993 STARS-VC-A023/001/00

Environment — Abbreviation for software engineering environment; the totality of com-
puter hardware and software facilities that directly support software engineering.

Event — A noteworthy happening that occurs at a particular point in time (e.g., delivery
of a source file to a configuration management library).

Measurement data — Raw data collected in Amadeus’ database; the data is organized
as a sequence of data records; each record represents an occurrence of an event or a
particular measurement of a metric value; each record consists of a predefined collection

of data fields.

Metric — A measurable characteristic of an entity (e.g., number of lines of code in a source
file, duration of a compiler execution).

Query — A request to extract measurement data from Amadeus’ database.

Specification — An instruction to the Amadeus Interpreter concerning the conditions under
which a particular agent is to be invoked and governing the manner in which the agent
is invoked; the instruction only takes effect upon activation of the specification (e.g.,
via an Amadeus_activate command) and ceases its effect upon deactivation of the
specification (e.g., via an Amadeus_deactivate command).

Target class — The property of software that is to be predicted through Classification
Analysis (e.g., error proneness).

Page 54

3 December 1993 STARS-VC-A023/001/00

C PIP Decomposition

Figure 12 is a depiction of the activity hierarchy into which the PIP is decomposed, rep-
resented as a tree. The IDEF0 model of the PIP contains a decomposition page for each
non-leaf activity in this tree. These decomposition pages are presented and discussed in
Section 2.

Node Tree for home/goldied /stars/idef/PIP.idd

[A0} Instrument Software Process
p—--— [A1] Determine Measurement Requirements
M———[A11] Select Metrics
N—— [A12] Identify Required Data Items
\-——— [A13] Identify Data Collection & Usage Points
————[A2] Design Measurement Mechanisms
f~——— [A21] Design Automated Mechanisms
M [A211] Develop Tool-Independent Designs
N——1[A212] Identify Tool Requirements
f——— [A213]} Select Measurement Tools
N———- [A214] Design Additional Tools Needed
\—r— [A215] Design Tool Integration "Glue"
A—— [A22] Design Manual Mechanisms
[A221] Design Data Collection Forms
[A222] Define Manual Procedures
\——— [A23] Evaluate Cost of Proposed Designs
[A231] Estimate Cost of Automated Mechanisms
[A232] Bstimate Cost of Manual Mechanisms
[A233] Bvaluate Cost
[A234] Approve Designs
i~——— {A3] Implement Measurement Mechanisms
[— [A31] Acquire Measurement Tools
[A311] Purchase Measurement Tools
[A312) Develop Measurement Tools
p~—— [A32] Integrate Measurement Tools
\-——— [A33] Publish Data Collection Forms
—— {A34] Publish Manual Procedures
- [Ad] Execute Measurement Mechanisms
M—— [A41] Execute Data Collection Mechanisms
M———— {Ad2] Bxecute Analysis Mechanisms
N——— [A43] Execute Reporting Mechanisms
\——— [A44] Execute Feedback Mechanisms

Figure 12: PIP Decomposition Hierarchy

Page 55

